These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 30669003)
1. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting. Kiyotake EA; Douglas AW; Thomas EE; Nimmo SL; Detamore MS Acta Biomater; 2019 Sep; 95():176-187. PubMed ID: 30669003 [TBL] [Abstract][Full Text] [Related]
2. Machine learning-based design strategy for 3D printable bioink: elastic modulus and yield stress determine printability. Lee J; Oh SJ; An SH; Kim WD; Kim SH Biofabrication; 2020 May; 12(3):035018. PubMed ID: 32252038 [TBL] [Abstract][Full Text] [Related]
3. Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach. Gao T; Gillispie GJ; Copus JS; Pr AK; Seol YJ; Atala A; Yoo JJ; Lee SJ Biofabrication; 2018 Jun; 10(3):034106. PubMed ID: 29923501 [TBL] [Abstract][Full Text] [Related]
4. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier. Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517 [TBL] [Abstract][Full Text] [Related]
5. Assessing bioink shape fidelity to aid material development in 3D bioprinting. Ribeiro A; Blokzijl MM; Levato R; Visser CW; Castilho M; Hennink WE; Vermonden T; Malda J Biofabrication; 2017 Nov; 10(1):014102. PubMed ID: 28976364 [TBL] [Abstract][Full Text] [Related]
6. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
7. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related]
8. The correlation between rheological properties and extrusion-based printability in bioink artifact quantification. Gillispie GJ; Copus J; Uzun-Per M; Yoo JJ; Atala A; Niazi MKK; Lee SJ Mater Des; 2023 Sep; 233():. PubMed ID: 37854951 [TBL] [Abstract][Full Text] [Related]
9. Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks. Lee SC; Gillispie G; Prim P; Lee SJ Chem Rev; 2020 Oct; 120(19):10834-10886. PubMed ID: 32815369 [TBL] [Abstract][Full Text] [Related]
10. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting. Jessop ZM; Al-Sabah A; Gao N; Kyle S; Thomas B; Badiei N; Hawkins K; Whitaker IS Biofabrication; 2019 Jul; 11(4):045006. PubMed ID: 30743252 [TBL] [Abstract][Full Text] [Related]
11. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior. Shin M; Galarraga JH; Kwon MY; Lee H; Burdick JA Acta Biomater; 2019 Sep; 95():165-175. PubMed ID: 30366132 [TBL] [Abstract][Full Text] [Related]
12. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Kim MH; Lee YW; Jung WK; Oh J; Nam SY J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328 [TBL] [Abstract][Full Text] [Related]
13. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Diamantides N; Wang L; Pruiksma T; Siemiatkoski J; Dugopolski C; Shortkroff S; Kennedy S; Bonassar LJ Biofabrication; 2017 Jul; 9(3):034102. PubMed ID: 28677597 [TBL] [Abstract][Full Text] [Related]
14. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies. Chimene D; Kaunas R; Gaharwar AK Adv Mater; 2020 Jan; 32(1):e1902026. PubMed ID: 31599073 [TBL] [Abstract][Full Text] [Related]
15. High density cell seeding affects the rheology and printability of collagen bioinks. Diamantides N; Dugopolski C; Blahut E; Kennedy S; Bonassar LJ Biofabrication; 2019 Aug; 11(4):045016. PubMed ID: 31342915 [TBL] [Abstract][Full Text] [Related]
16. Hyaluronic acid as a bioink for extrusion-based 3D printing. Petta D; D'Amora U; Ambrosio L; Grijpma DW; Eglin D; D'Este M Biofabrication; 2020 May; 12(3):032001. PubMed ID: 32259809 [TBL] [Abstract][Full Text] [Related]
17. 3D Bioprinting with Visible Light Cross-Linkable Mucin-Hyaluronic Acid Composite Bioink for Lung Tissue Engineering. Sasikumar SC; Goswami U; Raichur AM ACS Appl Bio Mater; 2024 Aug; 7(8):5411-5422. PubMed ID: 38996006 [TBL] [Abstract][Full Text] [Related]
18. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
19. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
20. Characterizing Bioinks for Extrusion Bioprinting: Printability and Rheology. O'Connell C; Ren J; Pope L; Zhang Y; Mohandas A; Blanchard R; Duchi S; Onofrillo C Methods Mol Biol; 2020; 2140():111-133. PubMed ID: 32207108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]