BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30669247)

  • 21. The volatile emission of Eurosta solidaginis primes herbivore-induced volatile production in Solidago altissima and does not directly deter insect feeding.
    Helms AM; De Moraes CM; Mescher MC; Tooker JF
    BMC Plant Biol; 2014 Jun; 14():173. PubMed ID: 24947749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Can Herbivore-Induced Volatiles Protect Plants by Increasing the Herbivores' Susceptibility to Natural Pathogens?
    Gasmi L; Martínez-Solís M; Frattini A; Ye M; Collado MC; Turlings TCJ; Erb M; Herrero S
    Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30366995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpenes by the plants, but has little effect on the attraction of pest and beneficial insects.
    von Mérey G; Veyrat N; Mahuku G; Valdez RL; Turlings TC; D'Alessandro M
    Phytochemistry; 2011 Oct; 72(14-15):1838-47. PubMed ID: 21658734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced transcriptome responses in herbivore-infested tea plants by the green leaf volatile (Z)-3-hexenol.
    Xin Z; Ge L; Chen S; Sun X
    J Plant Res; 2019 Mar; 132(2):285-293. PubMed ID: 30758750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Green leaf volatiles: a plant's multifunctional weapon against herbivores and pathogens.
    Scala A; Allmann S; Mirabella R; Haring MA; Schuurink RC
    Int J Mol Sci; 2013 Aug; 14(9):17781-811. PubMed ID: 23999587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergistic interactions between volicitin, jasmonic acid and ethylene mediate insect-induced volatile emission in Zea mays.
    Schmelz EA; Alborn HT; Tumlinson JH
    Physiol Plant; 2003 Mar; 117(3):403-412. PubMed ID: 12654041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize.
    Yan ZG; Wang CZ
    Phytochemistry; 2006 Jan; 67(1):34-42. PubMed ID: 16310233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Primed to grow: a new role for green leaf volatiles in plant stress responses.
    Engelberth J
    Plant Signal Behav; 2020; 15(1):1701240. PubMed ID: 31814504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immature leaves are the dominant volatile-sensing organs of maize.
    Wang L; Jäggi S; Cofer TM; Waterman JM; Walthert M; Glauser G; Erb M
    Curr Biol; 2023 Sep; 33(17):3679-3689.e3. PubMed ID: 37597519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology.
    ul Hassan MN; Zainal Z; Ismail I
    Plant Biotechnol J; 2015 Aug; 13(6):727-39. PubMed ID: 25865366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Processing of Airborne Green Leaf Volatiles for Their Glycosylation in the Exposed Plants.
    Sugimoto K; Iijima Y; Takabayashi J; Matsui K
    Front Plant Sci; 2021; 12():721572. PubMed ID: 34868107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Synthesis of Pentyl Leaf Volatiles and Their Role in Resistance to Anthracnose Leaf Blight.
    Gorman Z; Tolley JP; Koiwa H; Kolomiets MV
    Front Plant Sci; 2021; 12():719587. PubMed ID: 34512698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. COSTS OF INDUCED RESPONSES AND TOLERANCE TO HERBIVORY IN MALE AND FEMALE FITNESS COMPONENTS OF WILD RADISH.
    Agrawal AA; Strauss SY; Stout MJ
    Evolution; 1999 Aug; 53(4):1093-1104. PubMed ID: 28565524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Priming of antiherbivore defensive responses in plants.
    Kim J; Felton GW
    Insect Sci; 2013 Jun; 20(3):273-85. PubMed ID: 23955880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway.
    Tong X; Qi J; Zhu X; Mao B; Zeng L; Wang B; Li Q; Zhou G; Xu X; Lou Y; He Z
    Plant J; 2012 Sep; 71(5):763-75. PubMed ID: 22519706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Plant anti-herbivore defense priming: Concept, mechanisms and application.].
    Wang J; Song YY; Hu L; Yang MY; Zeng RS
    Ying Yong Sheng Tai Xue Bao; 2018 Jun; 29(6):2068-2078. PubMed ID: 29974718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variability in the Capacity to Produce Damage-Induced Aldehyde Green Leaf Volatiles among Different Plant Species Provides Novel Insights into Biosynthetic Diversity.
    Engelberth J; Engelberth M
    Plants (Basel); 2020 Feb; 9(2):. PubMed ID: 32041302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling.
    Li T; Cofer T; Engelberth M; Engelberth J
    Plants (Basel); 2016 Jan; 5(1):. PubMed ID: 27135225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Green leaf volatiles co-opt proteins involved in molecular pattern signalling in plant cells.
    Tanarsuwongkul S; Fisher KW; Mullis BT; Negi H; Roberts J; Tomlin F; Wang Q; Stratmann JW
    Plant Cell Environ; 2024 Mar; 47(3):928-946. PubMed ID: 38164082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Defence priming in tomato by the green leaf volatile (Z)-3-hexenol reduces whitefly transmission of a plant virus.
    Su Q; Yang F; Zhang Q; Tong H; Hu Y; Zhang X; Xie W; Wang S; Wu Q; Zhang Y
    Plant Cell Environ; 2020 Nov; 43(11):2797-2811. PubMed ID: 32955131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.