These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 30669307)

  • 1. Recent Advances in Piezoelectric Wafer Active Sensors for Structural Health Monitoring Applications.
    Mei H; Haider MF; Joseph R; Migot A; Giurgiutiu V
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphysics Simulation of Low-Amplitude Acoustic Wave Detection by Piezoelectric Wafer Active Sensors Validated by In-Situ AE-Fatigue Experiment.
    Bhuiyan MY; Giurgiutiu V
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28817081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of piezoelectric wafer active sensor for acoustic emission sensing.
    Bhuiyan Y; Lin B; Giurgiutiu V
    Ultrasonics; 2019 Feb; 92():35-49. PubMed ID: 30218898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical and Experimental Study of Fatigue-Crack-Growth AE Signals in Thin Sheet Metals.
    Joseph R; Giurgiutiu V
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crack-Length Estimation for Structural Health Monitoring Using the High-Frequency Resonances Excited by the Energy Release during Fatigue-Crack Growth.
    Joseph R; Mei H; Migot A; Giurgiutiu V
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Ultrasonic Guided Wave Transducer for Monitoring of High Temperature Pipelines.
    Dhutti A; Tumin SA; Balachandran W; Kanfoud J; Gan TH
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inspection of Piezoceramic Transducers Used for Structural Health Monitoring.
    Mueller I; Fritzen CP
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezoelectric Wafer Active Sensor Transducers for Acoustic Emission Applications.
    Griffin C; Giurgiutiu V
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.
    Liu M; Zeng Z; Xu H; Liao Y; Zhou L; Zhang Z; Su Z
    Ultrasonics; 2017 Jul; 78():166-174. PubMed ID: 28371650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Perspective of Non-Fiber-Optical Metamaterial and Piezoelectric Material Sensing in Automated Structural Health Monitoring.
    Annamdas VGM; Soh CK
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibration-Based In-Situ Detection and Quantification of Delamination in Composite Plates.
    Mei H; Migot A; Haider MF; Joseph R; Bhuiyan MY; Giurgiutiu V
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30978968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A frequency-sensing readout using piezoelectric sensors for sensing of physiological signals.
    Buxi D; Redouté JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1420-3. PubMed ID: 25570234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bond-Slip Monitoring of Concrete Structures Using Smart Sensors-A Review.
    Huo L; Cheng H; Kong Q; Chen X
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30862071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue-Crack Detection and Monitoring through the Scattered-Wave Two-Dimensional Cross-Correlation Imaging Method Using Piezoelectric Transducers.
    Xiao W; Yu L; Joseph R; Giurgiutiu V
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-of-the-Art and Practical Guide to Ultrasonic Transducers for Harsh Environments Including Temperatures above 2120 °F (1000 °C) and Neutron Flux above 10
    Tittmann BR; Batista CFG; Trivedi YP; Lissenden Iii CJ; Reinhardt BT
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31683921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic Emission Monitoring of Carbon Fibre Reinforced Composites with Embedded Sensors for In-Situ Damage Identification.
    Huijer A; Kassapoglou C; Pahlavan L
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature Effects on Electromechanical Response of Deposited Piezoelectric Sensors Used in Structural Health Monitoring of Aerospace Structures.
    Hoshyarmanesh H; Ghodsi M; Kim M; Cho HH; Park HH
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic wave-based structural health monitoring embedded instrument.
    Aranguren G; Monje PM; Cokonaj V; Barrera E; Ruiz M
    Rev Sci Instrum; 2013 Dec; 84(12):125106. PubMed ID: 24387467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in the Structural Health Monitoring of Bridges Using Piezoelectric Transducers.
    Chen Y; Xue X
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Feasibility Study on Timber Damage Detection Using Piezoceramic-Transducer-Enabled Active Sensing.
    Zhang J; Huang Y; Zheng Y
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29762483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.