These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 30669432)
21. In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysis. Wang R; Garcia D; Kamath RR; Dou C; Ma X; Shen B; Choo H; Fezzaa K; Yu HZ; Kong ZJ Sci Rep; 2022 Aug; 12(1):13716. PubMed ID: 35962031 [TBL] [Abstract][Full Text] [Related]
22. Production of Single Tracks of Ti-6Al-4V by Directed Energy Deposition to Determine the Layer Thickness for Multilayer Deposition. Saboori A; Tusacciu S; Busatto M; Lai M; Biamino S; Fino P; Lombardi M J Vis Exp; 2018 Mar; (133):. PubMed ID: 29608163 [TBL] [Abstract][Full Text] [Related]
23. Laser Melting Deposition Additive Manufacturing of Ti6Al4V Biomedical Alloy: Mesoscopic In-Situ Flow Field Mapping via Computational Fluid Dynamics and Analytical Modelling with Empirical Testing. Mahmood MA; Ur Rehman A; Pitir F; Salamci MU; Mihailescu IN Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947357 [TBL] [Abstract][Full Text] [Related]
24. Multi-Fidelity Surrogate-Based Process Mapping with Uncertainty Quantification in Laser Directed Energy Deposition. Menon N; Mondal S; Basak A Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454595 [TBL] [Abstract][Full Text] [Related]
25. Laser Remelting Process Simulation and Optimization for Additive Manufacturing of Nickel-Based Super Alloys. Soffel F; Lin Y; Keller D; Egorov S; Wegener K Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009327 [TBL] [Abstract][Full Text] [Related]
26. In-situ high-speed X-ray imaging of piezo-driven directed energy deposition additive manufacturing. Wolff SJ; Wu H; Parab N; Zhao C; Ehmann KF; Sun T; Cao J Sci Rep; 2019 Jan; 9(1):962. PubMed ID: 30700736 [TBL] [Abstract][Full Text] [Related]
27. Data analytics approach for melt-pool geometries in metal additive manufacturing. Lee S; Peng J; Shin D; Choi YS Sci Technol Adv Mater; 2019; 20(1):972-978. PubMed ID: 31692926 [TBL] [Abstract][Full Text] [Related]
28. Closed-Loop Control of Melt Pool Temperature during Laser Metal Deposition. Wang Q; Zhang J; Zhu Q; Cao Y Sensors (Basel); 2024 Aug; 24(15):. PubMed ID: 39124067 [TBL] [Abstract][Full Text] [Related]
29. Continuous Comprehensive Monitoring of Melt Pool Morphology Under Realistic Printing Scenarios with Laser Powder Bed Fusion. Vallabh CKP; Zhao X 3D Print Addit Manuf; 2023 Feb; 10(1):101-110. PubMed ID: 36998791 [TBL] [Abstract][Full Text] [Related]
30. Determining the Effects of Inter-Layer Time Interval in Powder-Fed Laser-Directed Energy Deposition on the Microstructure of Inconel 718 via In Situ Thermal Monitoring. Handler E; Yadollahi A; Liu Y; Thompson SM Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591418 [TBL] [Abstract][Full Text] [Related]
31. Spattering mechanism of laser powder bed fusion additive manufacturing on heterogeneous surfaces. Ikeshoji TT; Yonehara M; Kato C; Yanaga Y; Takeshita K; Kyogoku H Sci Rep; 2022 Nov; 12(1):20384. PubMed ID: 36437289 [TBL] [Abstract][Full Text] [Related]
32. Vision-Based Estimation of Force Balance of Near-Suspended Melt Pool for Drooping and Collapsing Prediction. Luo L; Qian E; Lu T; Pan J; Liu M; Liu C; Guo Y; Bi L Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894064 [TBL] [Abstract][Full Text] [Related]
33. In situ elemental analysis and failures detection during additive manufacturing process utilizing laser induced breakdown spectroscopy. Lednev VN; Sdvizhenskii PA; Asyutin RD; Tretyakov RS; Grishin MY; Stavertiy AY; Fedorov AN; Pershin SM Opt Express; 2019 Feb; 27(4):4612-4628. PubMed ID: 30876076 [TBL] [Abstract][Full Text] [Related]
34. Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion. Lane B; Whitenton E; Moylan S Proc SPIE Int Soc Opt Eng; 2016; 986104():. PubMed ID: 32165779 [TBL] [Abstract][Full Text] [Related]
35. Accurate determination of laser spot position during laser powder bed fusion process thermography. Zhirnov I; Mekhontsev S; Lane B; Grantham S; Bura N Manuf Lett; 2020; 23():. PubMed ID: 32855904 [TBL] [Abstract][Full Text] [Related]
36. In situ observation of melt pool evolution in ultrasonic vibration-assisted directed energy deposition. El-Azab SA; Zhang C; Jiang S; Vyatskikh AL; Valdevit L; Lavernia EJ; Schoenung JM Sci Rep; 2023 Oct; 13(1):17705. PubMed ID: 37848463 [TBL] [Abstract][Full Text] [Related]
37. Study of the Influence of Shielding Gases on Laser Metal Deposition of Inconel 718 Superalloy. Ruiz JE; Cortina M; Arrizubieta JI; Lamikiz A Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30096886 [TBL] [Abstract][Full Text] [Related]
38. Stability of a Melt Pool during 3D-Printing of an Unsupported Steel Component and Its Influence on Roughness. Skalon M; Meier B; Gruberbauer A; Amancio-Filho ST; Sommitsch C Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050719 [No Abstract] [Full Text] [Related]
39. Physics-Informed Machine Learning for Accurate Prediction of Temperature and Melt Pool Dimension in Metal Additive Manufacturing. Jiang F; Xia M; Hu Y 3D Print Addit Manuf; 2024 Aug; 11(4):e1679-e1689. PubMed ID: 39360129 [TBL] [Abstract][Full Text] [Related]
40. In-situ digital image correlation and thermal monitoring in directed energy deposition additive manufacturing. Haley J; Leach C; Jordan B; Dehoff R; Paquit V Opt Express; 2021 Mar; 29(7):9927-9941. PubMed ID: 33820156 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]