These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30669432)

  • 41. Numerical Modeling Design for the Hybrid Additive Manufacturing of Laser Directed Energy Deposition and Shot Peening Forming Fe-Cr-Ni-B-Si Alloy.
    Zhang X; Li D; Zhu W
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143133
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Robust Recurrent Neural Networks-Based Surrogate Model for Thermal History and Melt Pool Characteristics in Directed Energy Deposition.
    Wu SH; Tariq U; Joy R; Mahmood MA; Malik AW; Liou F
    Materials (Basel); 2024 Sep; 17(17):. PubMed ID: 39274754
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Time-Resolved Absorptance and Melt Pool Dynamics during Intense Laser Irradiation of a Metal.
    Simonds BJ; Sowards J; Hadler J; Pfeif E; Wilthan B; Tanner J; Harris C; Williams P; Lehman J
    Phys Rev Appl; 2018; 10(4):. PubMed ID: 32118095
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of Melt-Pool Stability in 3D Printing of NdFeB Magnets on Density and Magnetic Properties.
    Skalon M; Görtler M; Meier B; Arneitz S; Urban N; Mitsche S; Huber C; Franke J; Sommitsch C
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31905807
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The interplay between vapour, liquid, and solid phases in laser powder bed fusion.
    Bitharas I; Parab N; Zhao C; Sun T; Rollett AD; Moore AJ
    Nat Commun; 2022 May; 13(1):2959. PubMed ID: 35618737
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of Laser Defocusing on Bead Geometry in Coaxial Titanium Wire-Based Laser Metal Deposition.
    Mathenia R; Flood A; McLain B; Sparks T; Liou F
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399140
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Encoding Stability into Laser Powder Bed Fusion Monitoring Using Temporal Features and Pore Density Modelling.
    Booth BG; Heylen R; Nourazar M; Verhees D; Philips W; Bey-Temsamani A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632151
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computer Simulation of Hydrodynamic and Thermal Processes in DLD Technology.
    Turichin GA; Valdaytseva EA; Stankevich SL; Udin IN
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361335
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Defect detection by multi-axis infrared process monitoring of laser beam directed energy deposition.
    Herzog T; Brandt M; Trinchi A; Sola A; Hagenlocher C; Molotnikov A
    Sci Rep; 2024 Feb; 14(1):3861. PubMed ID: 38360826
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST.
    Lane B; Moylan S; Whitenton E; Ma L
    Rapid Prototyp J; 2016; 22(5):778-787. PubMed ID: 28058036
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Process Monitoring Using Synchronized Path Infrared Thermography in PBF-LB/M.
    Höfflin D; Sauer C; Schiffler A; Hartmann J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015704
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing.
    Kao A; Gan T; Tonry C; Krastins I; Pericleous K
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190249. PubMed ID: 32279626
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Feasibility study on multifrequency excitation of the melt pool during ultrasonic-assisted laser beam welding.
    Nowroth C; Grajczak J; Schmelt A; Nothdurft S; Twiefel J; Hermsdorf J; Kaierle S; Wallaschek J
    Ultrasonics; 2023 May; 131():106954. PubMed ID: 36812817
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Revealing internal flow behaviour in arc welding and additive manufacturing of metals.
    Aucott L; Dong H; Mirihanage W; Atwood R; Kidess A; Gao S; Wen S; Marsden J; Feng S; Tong M; Connolley T; Drakopoulos M; Kleijn CR; Richardson IM; Browne DJ; Mathiesen RH; Atkinson HV
    Nat Commun; 2018 Dec; 9(1):5414. PubMed ID: 30575762
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of the Machining Process of Inconel 718 Parts Manufactured by Laser Metal Deposition.
    Ostra T; Alonso U; Veiga F; Ortiz M; Ramiro P; Alberdi A
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31284401
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.
    Caiazzo F; Caggiano A
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29562682
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Research on the Thermal Behaviour of a Selectively Laser Melted Aluminium Alloy: Simulation and Experiment.
    Li Z; Li BQ; Bai P; Liu B; Wang Y
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29987242
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Latest Developments in Industrial Hybrid Machine Tools that Combine Additive and Subtractive Operations.
    Cortina M; Arrizubieta JI; Ruiz JE; Ukar E; Lamikiz A
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30567369
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In situ characterization of laser-generated melt pools using synchronized ultrasound and high-speed X-ray imaging.
    Gillespie J; Yeoh WY; Zhao C; Parab ND; Sun T; Rollett AD; Lan B; Kube CM
    J Acoust Soc Am; 2021 Oct; 150(4):2409. PubMed ID: 34717444
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing.
    Leung CLA; Marussi S; Atwood RC; Towrie M; Withers PJ; Lee PD
    Nat Commun; 2018 Apr; 9(1):1355. PubMed ID: 29636443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.