These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30669491)

  • 1. Quantifying Joule Heating and Mass Transport in Metal Nanowires During Controlled Electromigration.
    Yagi M; Shirakashi JI
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts.
    Song TB; Chen Y; Chung CH; Yang YM; Bob B; Duan HS; Li G; Tu KN; Huang Y; Yang Y
    ACS Nano; 2014 Mar; 8(3):2804-11. PubMed ID: 24517263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical temperature in feedback-controlled electromigration of gold nanostructures.
    Sawtelle SD; Kobos ZA; Reed MA
    Nanotechnology; 2019 Jan; 30(1):015201. PubMed ID: 30362467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Transport in a Silicon Nanowire FET Transistor: Hot Electrons and Local Power Dissipation.
    Martinez A; Barker JR
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32722649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photothermoelectric Effects and Large Photovoltages in Plasmonic Au Nanowires with Nanogaps.
    Zolotavin P; Evans C; Natelson D
    J Phys Chem Lett; 2017 Apr; 8(8):1739-1744. PubMed ID: 28365996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Joule heating problem in silver nanowire transparent electrodes.
    Khaligh HH; Xu L; Khosropour A; Madeira A; Romano M; Pradére C; Tréguer-Delapierre M; Servant L; Pope MA; Goldthorpe IA
    Nanotechnology; 2017 Oct; 28(42):425703. PubMed ID: 28930100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the morphological stability of a polycrystalline tungsten nanowire with a carbon shell.
    You GF; Gong H; Thong JT
    Nanotechnology; 2010 May; 21(19):195701. PubMed ID: 20400816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ transmission electron microscopy observation of electromigration in Au thin wires.
    Murakami Y; Arita M; Hamada K; Takahashi Y
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8741-5. PubMed ID: 23421277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gate-controlled heat generation in ZnO nanowire FETs.
    Pescaglini A; Biswas S; Cammi D; Ronning C; Holmes JD; Iacopino D
    Phys Chem Chem Phys; 2017 May; 19(21):14042-14047. PubMed ID: 28516985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Ultra-high Aspect Ratio Nanorod Architectures grown on Porous Substrate via Electromigration.
    Mansourian A; Paknejad SA; Wen Q; Vizcay-Barrena G; Fleck RA; Zayats AV; Mannan SH
    Sci Rep; 2016 Feb; 6():22272. PubMed ID: 26923553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromigration and morphological changes in Ag nanostructures.
    Chatterjee A; Bai T; Edler F; Tegenkamp C; Weide-Zaage K; Pfnür H
    J Phys Condens Matter; 2018 Feb; 30(8):084002. PubMed ID: 29336347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ electrical characterization of tapered InAs nanowires in a transmission electron microscope with ohmic contacts.
    Zhang C; Neklyudova M; Fang L; Xu Q; Wang H; Tichelaar FD; Zandbergen HW
    Nanotechnology; 2015 Apr; 26(15):155703. PubMed ID: 25800081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ scanning electron microscopy observations of filler material transport in branched carbon microtubes by Joule heating.
    Okada M; Sasaki D; Kohno H
    Microscopy (Oxf); 2020 Oct; 69(5):291-297. PubMed ID: 32401304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconnectable sub-5 nm nanogaps in ultralong gold nanowires.
    Xiang C; Kim JY; Penner RM
    Nano Lett; 2009 May; 9(5):2133-8. PubMed ID: 19366192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal and Thermoelectric Transport in Highly Resistive Single Sb
    Ko TY; Shellaiah M; Sun KW
    Sci Rep; 2016 Oct; 6():35086. PubMed ID: 27713527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of feedback parameters on resistance control of metal nanowires by stepwise feedback-controlled electromigration.
    Itami S; Tomoda Y; Yasutake RT; Shirakashi J
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7464-8. PubMed ID: 21137960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ observation of the formation process for free-standing Au nanowires with a scanning electron microscope.
    Aiba A; Kaneko S; Fujii S; Nishino T; Tsukagoshi K; Kiguchi M
    Nanotechnology; 2017 Mar; 28(10):105707. PubMed ID: 28169228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in situ investigation of electromigration in Cu nanowires.
    Huang Q; Lilley CM; Divan R
    Nanotechnology; 2009 Feb; 20(7):075706. PubMed ID: 19417434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanowire heating by optical electromagnetic irradiation.
    Roder PB; Pauzauskie PJ; Davis EJ
    Langmuir; 2012 Nov; 28(46):16177-85. PubMed ID: 23061375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joule-Heated and Suspended Silicon Nanowire Based Sensor for Low-Power and Stable Hydrogen Detection.
    Yun J; Ahn JH; Moon DI; Choi YK; Park I
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42349-42357. PubMed ID: 31617994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.