BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 30669502)

  • 1. Retraction: Bruder, L. et al. Transcatheter Decellularized Tissue-Engineered Heart Valve (dTEHV) Grown on Polyglycolic Acid (PGA) Scaffold Coated with P4HB Shows Improved Functionality over 52 Weeks due to Polyether-Ether-Ketone (PEEK) Insert.
    Bruder L; Brakmann K; Stegner V; Sigler M; Berger F; Schmitt B
    J Funct Biomater; 2019 Jan; 10(1):. PubMed ID: 30669502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcatheter Decellularized Tissue-Engineered Heart Valve (dTEHV) Grown on Polyglycolic Acid (PGA) Scaffold Coated with P4HB Shows Improved Functionality over 52 Weeks due to Polyether-Ether-Ketone (PEEK) Insert.
    Bruder L; Spriestersbach H; Brakmann K; Stegner V; Sigler M; Berger F; Schmitt B
    J Funct Biomater; 2018 Nov; 9(4):. PubMed ID: 30428602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering.
    Brugmans MM; Soekhradj-Soechit RS; van Geemen D; Cox M; Bouten CV; Baaijens FP; Driessen-Mol A
    Tissue Eng Part A; 2016 Jan; 22(1-2):123-32. PubMed ID: 26466917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative evaluation of endothelial progenitors and cardiac valve endothelial cells: proliferation and differentiation on poly-glycolic acid/poly-4-hydroxybutyrate scaffold in response to vascular endothelial growth factor and transforming growth factor beta1.
    Dvorin EL; Wylie-Sears J; Kaushal S; Martin DP; Bischoff J
    Tissue Eng; 2003 Jun; 9(3):487-93. PubMed ID: 12857416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly-ε-caprolactone scaffold and reduced in vitro cell culture: beneficial effect on compaction and improved valvular tissue formation.
    Brugmans MM; Driessen-Mol A; Rubbens MP; Cox MA; Baaijens FP
    J Tissue Eng Regen Med; 2015 Dec; 9(12):E289-301. PubMed ID: 23677869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of biodegradable, three-dimensional matrices for tissue engineering of heart valves.
    Sodian R; Hoerstrup SP; Sperling JS; Martin DP; Daebritz S; Mayer JE; Vacanti JP
    ASAIO J; 2000; 46(1):107-10. PubMed ID: 10667727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS.
    Wu W; Geng P; Li G; Zhao D; Zhang H; Zhao J
    Materials (Basel); 2015 Sep; 8(9):5834-5846. PubMed ID: 28793537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Geometry of Decellularized Tissue Engineered Heart Valves to Prevent Leaflet Retraction.
    Sanders B; Loerakker S; Fioretta ES; Bax DJ; Driessen-Mol A; Hoerstrup SP; Baaijens FP
    Ann Biomed Eng; 2016 Apr; 44(4):1061-71. PubMed ID: 26183964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials.
    Engelmayr GC; Hildebrand DK; Sutherland FW; Mayer JE; Sacks MS
    Biomaterials; 2003 Jun; 24(14):2523-32. PubMed ID: 12695079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of novel meniscal scaffold structures using polyglycolic and poly-l-lactic acids.
    Murakami T; Otsuki S; Nakagawa K; Okamoto Y; Inoue T; Sakamoto Y; Sato H; Neo M
    J Biomater Appl; 2017 Aug; 32(2):150-161. PubMed ID: 28610487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term evaluation of thromboresistance of a poly(ether ether ketone) (PEEK) mechanical heart valve with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-grafted surface in a porcine aortic valve replacement model.
    Kambe Y; Mahara A; Tanaka H; Kakinoki S; Fukazawa K; Liu Y; Kyomoto M; Minatoya K; Ishihara K; Yamaoka T
    J Biomed Mater Res A; 2019 May; 107(5):1052-1063. PubMed ID: 30688402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaction durability of porous polyether-ether-ketone (PEEK) and titanium-coated PEEK interbody fusion devices.
    Torstrick FB; Klosterhoff BS; Westerlund LE; Foley KT; Gochuico J; Lee CSD; Gall K; Safranski DL
    Spine J; 2018 May; 18(5):857-865. PubMed ID: 29366985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of biomimetic conditions on mechanical and structural integrity of PGA/P4HB and electrospun PCL scaffolds.
    Klouda L; Vaz CM; Mol A; Baaijens FP; Bouten CV
    J Mater Sci Mater Med; 2008 Mar; 19(3):1137-44. PubMed ID: 17701317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PGA (polyglycolic acid)-P4HB (poly-4-hydroxybutyrate)-Based Bioengineered Valves in the Rat Aortic Circulation.
    Książek AA; Mitchell KJ; Cesarovic N; Schwarzwald CC; Hoerstrup SP; Weber B
    J Heart Valve Dis; 2016 May; 25(3):380-388. PubMed ID: 27989051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of osteogenic potential of poly-ether-ether-ketone with titanium-coated poly-ether-ether-ketone and titanium-blended poly-ether-ether-ketone: An
    Kumar TA; Jei JB; Muthukumar B
    J Indian Prosthodont Soc; 2017; 17(2):167-174. PubMed ID: 28584418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone.
    Johansson P; Jimbo R; Naito Y; Kjellin P; Currie F; Wennerberg A
    Int J Nanomedicine; 2016; 11():1435-42. PubMed ID: 27103801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First percutaneous implantation of a completely tissue-engineered self-expanding pulmonary heart valve prosthesis using a newly developed delivery system: a feasibility study in sheep.
    Spriestersbach H; Prudlo A; Bartosch M; Sanders B; Radtke T; Baaijens FP; Hoerstrup SP; Berger F; Schmitt B
    Cardiovasc Interv Ther; 2017 Jan; 32(1):36-47. PubMed ID: 27139179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensionally-Printed Polyether-Ether-Ketone Implant with a Cross-Linked Structure and Acid-Etched Microporous Surface Promotes Integration with Soft Tissue.
    Feng X; Yu H; Liu H; Yu X; Feng Z; Bai S; Zhao Y
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31382697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retraction: Azuma, K. et al. Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials. J. Funct. Biomater. 2015, 6, 104⁻142.
    Azuma K; Izumi R; Osaki T; Ifuku S; Morimoto M; Saimoto H; Minami S; Okamoto Y;
    J Funct Biomater; 2018 Jun; 9(2):. PubMed ID: 29880726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro evaluation of bioactivity of chemically deposited hydroxyapatite on polyether ether ketone.
    Almasi D; Izman S; Sadeghi M; Iqbal N; Roozbahani F; Krishnamurithy G; Kamarul T; Abdul Kadir MR
    Int J Biomater; 2015; 2015():475435. PubMed ID: 25838826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.