BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30669607)

  • 1. Discrimination of Chinese Liquors Based on Electronic Nose and Fuzzy Discriminant Principal Component Analysis.
    Wu X; Zhu J; Wu B; Zhao C; Sun J; Dai C
    Foods; 2019 Jan; 8(1):. PubMed ID: 30669607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of Chinese vinegar varieties using electronic nose and fuzzy Foley-Sammon transformation.
    Wu XH; Zhu J; Wu B; Huang DP; Sun J; Dai CX
    J Food Sci Technol; 2020 Apr; 57(4):1310-1319. PubMed ID: 32180627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of Multiple Chinese Liquors by Means of a QCM-based E-Nose and MDS-SVM Classifier.
    Li Q; Gu Y; Jia J
    Sensors (Basel); 2017 Jan; 17(2):. PubMed ID: 28146111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic nose with a new feature reduction method and a multi-linear classifier for Chinese liquor classification.
    Jing Y; Meng Q; Qi P; Zeng M; Li W; Ma S
    Rev Sci Instrum; 2014 May; 85(5):055004. PubMed ID: 24880405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Electronic Nose Detection System for Apple Quality Grading Based on Computational Fluid Dynamics Simulation and K-Nearest Neighbor Support Vector Machine.
    Zou X; Wang C; Luo M; Ren Q; Liu Y; Zhang S; Bai Y; Meng J; Zhang W; Su SW
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stacked Sparse Auto-Encoders (SSAE) Based Electronic Nose for Chinese Liquors Classification.
    Zhao W; Meng QH; Zeng M; Qi PF
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29292772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3D CFD Simulation and Analysis of Flow-Induced Forces on Polymer Piezoelectric Sensors in a Chinese Liquors Identification E-Nose.
    Gu Y; Wang YF; Li Q; Liu ZW
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27775622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Machine Learning Method for the Quality Detection of Base Liquor and Commercial Liquor Using Multidimensional Signals from an Electronic Nose.
    Li B; Gu Y
    Foods; 2023 Apr; 12(7):. PubMed ID: 37048329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing.
    Wen T; Yan J; Huang D; Lu K; Deng C; Zeng T; Yu S; He Z
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29382146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-Infrared Spectroscopy Combined with Fuzzy Improved Direct Linear Discriminant Analysis for Nondestructive Discrimination of Chrysanthemum Tea Varieties.
    Zhang J; Wu X; He C; Wu B; Zhang S; Sun J
    Foods; 2024 May; 13(10):. PubMed ID: 38790739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination of the Red Jujube Varieties Using a Portable NIR Spectrometer and Fuzzy Improved Linear Discriminant Analysis.
    Qi Z; Wu X; Yang Y; Wu B; Fu H
    Foods; 2022 Mar; 11(5):. PubMed ID: 35267396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on Distinguishing Fish Meal Quality Using Different Characteristic Parameters Based on Electronic Nose Technology.
    Li P; Ren Z; Shao K; Tan H; Niu Z
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31075849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification for
    Guo Z; Guo C; Chen Q; Ouyang Q; Shi J; El-Seedi HR; Zou X
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32283830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of aroma compounds of Chinese famous liquors by gas chromatography-mass spectrometry and flash GC electronic-nose.
    Xiao Z; Yu D; Niu Y; Chen F; Song S; Zhu J; Zhu G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jan; 945-946():92-100. PubMed ID: 24333641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification.
    Siuly S; Li Y
    Comput Methods Programs Biomed; 2015 Apr; 119(1):29-42. PubMed ID: 25704869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance Comparison of Fuzzy ARTMAP and LDA in Qualitative Classification of Iranian Rosa damascena Essential Oils by an Electronic Nose.
    Gorji-Chakespari A; Nikbakht AM; Sefidkon F; Ghasemi-Varnamkhasti M; Brezmes J; Llobet E
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27153069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands.
    Wu X; Fang Y; Wu B; Liu M
    Foods; 2023 Oct; 12(21):. PubMed ID: 37959047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a colorimetric sensor array for the discrimination of Chinese liquors based on selected volatile markers determined by GC-MS.
    Li JJ; Song CX; Hou CJ; Huo DQ; Shen CH; Luo XG; Yang M; Fa HB
    J Agric Food Chem; 2014 Oct; 62(43):10422-30. PubMed ID: 25289884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation and classification of Chinese Luzhou-flavor liquors with different geographical origins based on fingerprint and chemometric analysis.
    Qian Y; Zhang L; Sun Y; Tang Y; Li D; Zhang H; Yuan S; Li J
    J Food Sci; 2021 May; 86(5):1861-1877. PubMed ID: 33822387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a portable electronic nose for real-fake detection of liquors.
    Qi PF; Zeng M; Li ZH; Sun B; Meng QH
    Rev Sci Instrum; 2017 Sep; 88(9):095001. PubMed ID: 28964212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.