BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 30669663)

  • 1. Motion Plan of Maritime Autonomous Surface Ships by Dynamic Programming for Collision Avoidance and Speed Optimization.
    Geng X; Wang Y; Wang P; Zhang B
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Obstacle Avoidance for Unmanned Underwater Vehicles Based on an Improved Velocity Obstacle Method.
    Zhang W; Wei S; Teng Y; Zhang J; Wang X; Yan Z
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decision-Making for the Autonomous Navigation of Maritime Autonomous Surface Ships Based on Scene Division and Deep Reinforcement Learning.
    Zhang X; Wang C; Liu Y; Chen X
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31546977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autonomous ship navigation with an enhanced safety collision avoidance technique.
    Ali H; Xiong G; Tianci Q; Kumar R; Dong X; Shen Z
    ISA Trans; 2024 Jan; 144():271-281. PubMed ID: 37925231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Real-Time Collision Avoidance Framework of MASS Based on B-Spline and Optimal Decoupling Control.
    Zhang X; Wang C; Chui KT; Liu RW
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel model predictive artificial potential field based ship motion planning method considering COLREGs for complex encounter scenarios.
    He Z; Chu X; Liu C; Wu W
    ISA Trans; 2023 Mar; 134():58-73. PubMed ID: 36150903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized Dynamic Collision Avoidance Algorithm for USV Path Planning.
    Zhu H; Ding Y
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Underwater Submarine Path Planning Based on Artificial Potential Field Ant Colony Algorithm and Velocity Obstacle Method.
    Fu J; Lv T; Li B
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Autonomous Path Planning Model for Unmanned Ships Based on Deep Reinforcement Learning.
    Guo S; Zhang X; Zheng Y; Du AY
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31940855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial-temporal recurrent reinforcement learning for autonomous ships.
    Waltz M; Okhrin O
    Neural Netw; 2023 Aug; 165():634-653. PubMed ID: 37364473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time collision avoidance planning for unmanned surface vessels based on field theory.
    Li Y; Zheng J
    ISA Trans; 2020 Nov; 106():233-242. PubMed ID: 32693953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collision-free automatic berthing of maritime autonomous surface ships via safety-certified active disturbance rejection control.
    Liu H; Peng Z; Gu N; Wang H; Liu L; Wang D
    ISA Trans; 2024 May; 148():24-31. PubMed ID: 38514286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle Avoidance Based on an Improved RRT Algorithm.
    Wei K; Ren B
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29438320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-objective path planning for unmanned surface vehicle with currents effects.
    Ma Y; Hu M; Yan X
    ISA Trans; 2018 Apr; 75():137-156. PubMed ID: 29455891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sea-Sky Line and its Nearby Ships Detection Based on the Motion Attitude of Visible Light Sensors.
    Shan X; Zhao D; Pan M; Wang D; Zhao L
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomous Collision Avoidance at Sea: A Survey.
    Burmeister HC; Constapel M
    Front Robot AI; 2021; 8():739013. PubMed ID: 34604317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Avoid Collision Control of Autonomous Vehicle Based on Trajectory Re-Planning and V2V Information Interaction.
    Lin F; Wang K; Zhao Y; Wang S
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous dynamic obstacle avoidance for bacteria-powered microrobots (BPMs) with modified vector field histogram.
    Kim H; Cheang UK; Kim MJ
    PLoS One; 2017; 12(10):e0185744. PubMed ID: 29020016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an Improved Rapidly Exploring Random Trees Algorithm for Static Obstacle Avoidance in Autonomous Vehicles.
    Yang SM; Lin YA
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33806992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Non-Equal Time Interval Incremental Motion Prediction Method for Maritime Autonomous Surface Ships.
    Zhou Z; Xu H; Feng H; Li W
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.