These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 30670007)
1. Comprehensive anticancer drug response prediction based on a simple cell line-drug complex network model. Wei D; Liu C; Zheng X; Li Y BMC Bioinformatics; 2019 Jan; 20(1):44. PubMed ID: 30670007 [TBL] [Abstract][Full Text] [Related]
2. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization. Wang L; Li X; Zhang L; Gao Q BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489 [TBL] [Abstract][Full Text] [Related]
3. Predicting breast cancer drug response using a multiple-layer cell line drug response network model. Huang S; Hu P; Lakowski TM BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012 [TBL] [Abstract][Full Text] [Related]
4. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection. Dong Z; Zhang N; Li C; Wang H; Fang Y; Wang J; Zheng X BMC Cancer; 2015 Jun; 15():489. PubMed ID: 26121976 [TBL] [Abstract][Full Text] [Related]
5. TransCDR: a deep learning model for enhancing the generalizability of drug activity prediction through transfer learning and multimodal data fusion. Xia X; Zhu C; Zhong F; Liu L BMC Biol; 2024 Oct; 22(1):227. PubMed ID: 39385185 [TBL] [Abstract][Full Text] [Related]
6. A novel heterogeneous network-based method for drug response prediction in cancer cell lines. Zhang F; Wang M; Xi J; Yang J; Li A Sci Rep; 2018 Feb; 8(1):3355. PubMed ID: 29463808 [TBL] [Abstract][Full Text] [Related]
7. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance. Choi J; Park S; Ahn J Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872 [TBL] [Abstract][Full Text] [Related]
8. Predicting Anticancer Drug Responses Using a Dual-Layer Integrated Cell Line-Drug Network Model. Zhang N; Wang H; Fang Y; Wang J; Zheng X; Liu XS PLoS Comput Biol; 2015; 11(9):e1004498. PubMed ID: 26418249 [TBL] [Abstract][Full Text] [Related]
9. kESVR: An Ensemble Model for Drug Response Prediction in Precision Medicine Using Cancer Cell Lines Gene Expression. Majumdar A; Liu Y; Lu Y; Wu S; Cheng L Genes (Basel); 2021 May; 12(6):. PubMed ID: 34070793 [TBL] [Abstract][Full Text] [Related]
10. Computational models for predicting anticancer drug efficacy: A multi linear regression analysis based on molecular, cellular and clinical data of oral squamous cell carcinoma cohort. Robert BM; Brindha GR; Santhi B; Kanimozhi G; Prasad NR Comput Methods Programs Biomed; 2019 Sep; 178():105-112. PubMed ID: 31416538 [TBL] [Abstract][Full Text] [Related]
11. Optimal drug prediction from personal genomics profiles. Sheng J; Li F; Wong ST IEEE J Biomed Health Inform; 2015 Jul; 19(4):1264-70. PubMed ID: 25781964 [TBL] [Abstract][Full Text] [Related]
12. Identifying subpathway signatures for individualized anticancer drug response by integrating multi-omics data. Xu Y; Dong Q; Li F; Xu Y; Hu C; Wang J; Shang D; Zheng X; Yang H; Zhang C; Shao M; Meng M; Xiong Z; Li X; Zhang Y J Transl Med; 2019 Aug; 17(1):255. PubMed ID: 31387579 [TBL] [Abstract][Full Text] [Related]
13. DBDNMF: A Dual Branch Deep Neural Matrix Factorization method for drug response prediction. Liu H; Wang F; Yu J; Pan Y; Gong C; Zhang L; Zhang L PLoS Comput Biol; 2024 Apr; 20(4):e1012012. PubMed ID: 38574114 [TBL] [Abstract][Full Text] [Related]
14. Application of transfer learning for cancer drug sensitivity prediction. Dhruba SR; Rahman R; Matlock K; Ghosh S; Pal R BMC Bioinformatics; 2018 Dec; 19(Suppl 17):497. PubMed ID: 30591023 [TBL] [Abstract][Full Text] [Related]
15. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data. Park S; Soh J; Lee H BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645 [TBL] [Abstract][Full Text] [Related]
16. Improving anti-cancer drug response prediction using multi-task learning on graph convolutional networks. Liu H; Peng W; Dai W; Lin J; Fu X; Liu L; Liu L; Yu N Methods; 2024 Feb; 222():41-50. PubMed ID: 38157919 [TBL] [Abstract][Full Text] [Related]
17. Drug Response Prediction by Globally Capturing Drug and Cell Line Information in a Heterogeneous Network. Le DH; Pham VH J Mol Biol; 2018 Sep; 430(18 Pt A):2993-3004. PubMed ID: 29966608 [TBL] [Abstract][Full Text] [Related]
18. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response. Su R; Liu X; Wei L; Zou Q Methods; 2019 Aug; 166():91-102. PubMed ID: 30772464 [TBL] [Abstract][Full Text] [Related]
19. Clinical Drug Response Prediction by Using a Lq Penalized Network-Constrained Logistic Regression Method. Huang HH; Dai JG; Liang Y Cell Physiol Biochem; 2018; 51(5):2073-2084. PubMed ID: 30522095 [TBL] [Abstract][Full Text] [Related]
20. Meta-GDBP: a high-level stacked regression model to improve anticancer drug response prediction. Su R; Liu X; Xiao G; Wei L Brief Bioinform; 2020 May; 21(3):996-1005. PubMed ID: 30868164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]