BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30670691)

  • 1. A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme.
    Xing X; Kane DP; Bulock CR; Moore EA; Sharma S; Chabes A; Shcherbakova PV
    Nat Commun; 2019 Jan; 10(1):374. PubMed ID: 30670691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Analysis of Cancer-Associated DNA Polymerase ε Variants in
    Barbari SR; Kane DP; Moore EA; Shcherbakova PV
    G3 (Bethesda); 2018 Mar; 8(3):1019-1029. PubMed ID: 29352080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural consequence of the most frequently recurring cancer-associated substitution in DNA polymerase ε.
    Parkash V; Kulkarni Y; Ter Beek J; Shcherbakova PV; Kamerlin SCL; Johansson E
    Nat Commun; 2019 Jan; 10(1):373. PubMed ID: 30670696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A common cancer-associated DNA polymerase ε mutation causes an exceptionally strong mutator phenotype, indicating fidelity defects distinct from loss of proofreading.
    Kane DP; Shcherbakova PV
    Cancer Res; 2014 Apr; 74(7):1895-901. PubMed ID: 24525744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A DNA polymerase epsilon mutant that specifically causes +1 frameshift mutations within homonucleotide runs in yeast.
    Kirchner JM; Tran H; Resnick MA
    Genetics; 2000 Aug; 155(4):1623-32. PubMed ID: 10924461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mismatch repair and DNA polymerase δ proofreading prevent catastrophic accumulation of leading strand errors in cells expressing a cancer-associated DNA polymerase ϵ variant.
    Bulock CR; Xing X; Shcherbakova PV
    Nucleic Acids Res; 2020 Sep; 48(16):9124-9134. PubMed ID: 32756902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA polymerase δ proofreads errors made by DNA polymerase ε.
    Bulock CR; Xing X; Shcherbakova PV
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):6035-6041. PubMed ID: 32123096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenic mechanisms of cancer-associated DNA polymerase ϵ alleles.
    Herzog M; Alonso-Perez E; Salguero I; Warringer J; Adams DJ; Jackson SP; Puddu F
    Nucleic Acids Res; 2021 Apr; 49(7):3919-3931. PubMed ID: 33764464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Checkpoint-mediated DNA polymerase ε exonuclease activity curbing counteracts resection-driven fork collapse.
    Pellicanò G; Al Mamun M; Jurado-Santiago D; Villa-Hernández S; Yin X; Giannattasio M; Lanz MC; Smolka MB; Yeeles J; Shirahige K; García-Díaz M; Bermejo R
    Mol Cell; 2021 Jul; 81(13):2778-2792.e4. PubMed ID: 33932350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence of DNA polymerase ε antimutators that escape error-induced extinction in yeast.
    Williams LN; Herr AJ; Preston BD
    Genetics; 2013 Mar; 193(3):751-70. PubMed ID: 23307893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The absence of the catalytic domains of Saccharomyces cerevisiae DNA polymerase ϵ strongly reduces DNA replication fidelity.
    Garbacz MA; Cox PB; Sharma S; Lujan SA; Chabes A; Kunkel TA
    Nucleic Acids Res; 2019 May; 47(8):3986-3995. PubMed ID: 30698744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fidelity of DNA polymerase epsilon holoenzyme from budding yeast Saccharomyces cerevisiae.
    Shimizu K; Hashimoto K; Kirchner JM; Nakai W; Nishikawa H; Resnick MA; Sugino A
    J Biol Chem; 2002 Oct; 277(40):37422-9. PubMed ID: 12124389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Major Role of DNA Polymerase δ in Replication of Both the Leading and Lagging DNA Strands.
    Johnson RE; Klassen R; Prakash L; Prakash S
    Mol Cell; 2015 Jul; 59(2):163-175. PubMed ID: 26145172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced polymerase activity permits efficient synthesis by cancer-associated DNA polymerase ϵ variants at low dNTP levels.
    Barbari SR; Beach AK; Markgren JG; Parkash V; Moore EA; Johansson E; Shcherbakova PV
    Nucleic Acids Res; 2022 Aug; 50(14):8023-8040. PubMed ID: 35822874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple bypass assay for DNA polymerases shows that cancer-associated hypermutating variants exhibit differences in vitro.
    Crevel G; Kearsey S; Cotterill S
    FEBS J; 2023 Dec; 290(24):5744-5758. PubMed ID: 37592814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity.
    Mertz TM; Sharma S; Chabes A; Shcherbakova PV
    Proc Natl Acad Sci U S A; 2015 May; 112(19):E2467-76. PubMed ID: 25827231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA polymerase ε leading strand signature mutations result from defects in its proofreading activity.
    Johnson RE; Prakash L; Prakash S
    J Biol Chem; 2023 Jul; 299(7):104913. PubMed ID: 37307920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of the fourth subunit (Dpb4p) of DNA polymerase epsilon in Saccharomyces cerevisiae.
    Ohya T; Maki S; Kawasaki Y; Sugino A
    Nucleic Acids Res; 2000 Oct; 28(20):3846-52. PubMed ID: 11024162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dpb2p, a noncatalytic subunit of DNA polymerase epsilon, contributes to the fidelity of DNA replication in Saccharomyces cerevisiae.
    Jaszczur M; Flis K; Rudzka J; Kraszewska J; Budd ME; Polaczek P; Campbell JL; Jonczyk P; Fijalkowska IJ
    Genetics; 2008 Feb; 178(2):633-47. PubMed ID: 18245343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A panoply of errors: polymerase proofreading domain mutations in cancer.
    Rayner E; van Gool IC; Palles C; Kearsey SE; Bosse T; Tomlinson I; Church DN
    Nat Rev Cancer; 2016 Feb; 16(2):71-81. PubMed ID: 26822575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.