These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30671285)

  • 1. Inverse modelling for predicting both water and nitrate movement in a structured-clay soil (Red Ferrosol).
    Kirkham JM; Smith CJ; Doyle RB; Brown PH
    PeerJ; 2019; 6():e6002. PubMed ID: 30671285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the soil hydraulic properties from field data by solving an inverse problem.
    Guellouz L; Askri B; Jaffré J; Bouhlila R
    Sci Rep; 2020 Jun; 10(1):9359. PubMed ID: 32518263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study of variable-density flow and transport in unsaturated-saturated porous media.
    Liu Y; Kuang X; Jiao JJ; Li J
    J Contam Hydrol; 2015 Nov; 182():117-30. PubMed ID: 26379086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the temporal distribution of water, ammonium-N, and nitrate-N in the root zone of wheat using HYDRUS-2D under conservation agriculture.
    Shafeeq PM; Aggarwal P; Krishnan P; Rai V; Pramanik P; Das TK
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):2197-2216. PubMed ID: 31773538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental investigation and simulation of nitrogen transport in a subsurface infiltration system under saturated and unsaturated conditions.
    Pan W; Huang Q; Xu Z; Pang G
    J Contam Hydrol; 2020 May; 231():103621. PubMed ID: 32145430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-empirical modelling of hydraulic conductivity of clayey soils exposed to deionized and saline environments.
    Hedayati-Azar A; Sadeghi H
    J Contam Hydrol; 2022 Aug; 249():104042. PubMed ID: 35749934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural network model to predict transport parameters of reactive solutes from basic soil properties.
    Mojid MA; Hossain ABMZ; Ashraf MA
    Environ Pollut; 2019 Dec; 255(Pt 2):113355. PubMed ID: 31668956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drywell infiltration and hydraulic properties in heterogeneous soil profiles.
    Sasidharan S; Bradford SA; Šimůnek J; Kraemer SR
    J Hydrol (Amst); 2019 Mar; 570():598-611. PubMed ID: 31402797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling interactions between saturated and un-saturated zones by Hydrus-1D in semi-arid regions (plain of Kairouan, Central Tunisia).
    Saâdi M; Zghibi A; Kanzari S
    Environ Monit Assess; 2018 Feb; 190(3):170. PubMed ID: 29478086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling fecal bacteria transport and retention in agricultural and urban soils under saturated and unsaturated flow conditions.
    Balkhair KS
    Water Res; 2017 Mar; 110():313-320. PubMed ID: 28039813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From EU-SoilHydroGrids to HU-SoilHydroGrids: A leap forward in soil hydraulic mapping.
    Szabó B; Mészáros J; Laborczi A; Takács K; Szatmári G; Bakacsi Z; Makó A; Pásztor L
    Sci Total Environ; 2024 Apr; 921():171258. PubMed ID: 38417523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the effect of soil structure on water flow and isoproturon dynamics in an agricultural field receiving repeated urban waste compost application.
    Filipović V; Coquet Y; Pot V; Houot S; Benoit P
    Sci Total Environ; 2014 Nov; 499():546-59. PubMed ID: 24958010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of crude oil-induced water repellency on transport of Escherichia coli and bromide through repacked and physically-weathered soil columns.
    Moradi A; Mosaddeghi MR; Chavoshi E; Safadoust A; Soleimani M
    Environ Pollut; 2019 Dec; 255(Pt 2):113230. PubMed ID: 31627174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameters describing nonequilibrium transport of polycyclic aromatic hydrocarbons through contaminated soil columns: estimability analysis, correlation, and optimization.
    Ngo VV; Michel J; Gujisaite V; Latifi A; Simonnot MO
    J Contam Hydrol; 2014 Mar; 158():93-109. PubMed ID: 24522237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical solutions for reactive transport under an infiltration-redistribution cycle.
    Severino G; Indelman P
    J Contam Hydrol; 2004 May; 70(1-2):89-115. PubMed ID: 15068870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types.
    Kodesová R; Vignozzi N; Rohosková M; Hájková T; Kocárek M; Pagliai M; Kozák J; Simůnek J
    J Contam Hydrol; 2009 Feb; 104(1-4):107-25. PubMed ID: 19062128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-process herbicide transport in structured soil columns: experiments and model analysis.
    Köhne JM; Köhne S; Simůnek J
    J Contam Hydrol; 2006 May; 85(1-2):1-32. PubMed ID: 16494966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field experiment and numerical simulation of point source irrigation with multiple tracers.
    Selim T; Bouksila F; Hamed Y; Berndtsson R; Bahri A; Persson M
    PLoS One; 2018; 13(1):e0190500. PubMed ID: 29293600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of creosote transport properties in sandy and clay soils.
    da Rocha Soares LC; Mendes GP; Viegas RMA; Barbosa AM; Yoshikawa NK; Nascimento CAOD
    Environ Monit Assess; 2023 Jul; 195(8):967. PubMed ID: 37464226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significance of physical weathering of two-texturally different soils for the saturated transport of Escherichia coli and bromide.
    Safadoust A; Mahboubi AA; Mosaddeghi MR; Gharabaghi B; Voroney P; Unc A; Khodakaramian G
    J Environ Manage; 2012 Sep; 107():147-58. PubMed ID: 22647706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.