BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30671508)

  • 1. Data for optimizing Gamma Knife radiosurgery using the shot within shot technique.
    Johnson PB; Monterroso MI; Yang F; Bossart E; Keyvanloo A; Mellon EA
    Data Brief; 2019 Feb; 22():620-626. PubMed ID: 30671508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the prescription isodose line for Gamma Knife radiosurgery using the shot within shot technique.
    Johnson PB; Monterroso MI; Yang F; Mellon E
    Radiat Oncol; 2017 Nov; 12(1):187. PubMed ID: 29178912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical Evaluation of Shot-Within-Shot Optimization for Gamma Knife Radiosurgery Planning and Delivery.
    Johnson PB; Monterroso MI; Yang F; Bossart E; Keyvanloo A; Mellon EA
    World Neurosurg; 2019 Mar; 123():e218-e227. PubMed ID: 30481630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of radiation dose spillage from the Gamma Knife Perfexion with that from volumetric modulated arc radiosurgery during treatment of multiple brain metastases in a single fraction.
    McDonald D; Schuler J; Takacs I; Peng J; Jenrette J; Vanek K
    J Neurosurg; 2014 Dec; 121 Suppl():51-9. PubMed ID: 25434937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the gamma evaluation method in Gamma Knife film dosimetry.
    Park JH; Han JH; Kim CY; Oh CW; Lee DH; Suh TS; Gyu Kim D; Chung HT
    Med Phys; 2011 Oct; 38(10):5778-87. PubMed ID: 21992392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A real-time optimal inverse planning for Gamma Knife radiosurgery by convex optimization: description of the system and first dosimetry data.
    Levivier M; Carrillo RE; Charrier R; Martin A; Thiran JP
    J Neurosurg; 2018 Dec; 129(Suppl1):111-117. PubMed ID: 30544294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multistage stereotactic radiosurgery for large cerebral arteriovenous malformations using the Gamma Knife platform.
    Ding C; Hrycushko B; Whitworth L; Li X; Nedzi L; Weprin B; Abdulrahman R; Welch B; Jiang SB; Wardak Z; Timmerman RD
    Med Phys; 2017 Oct; 44(10):5010-5019. PubMed ID: 28681423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A preliminary study on a multiresolution-level inverse planning approach for Gamma Knife radiosurgery.
    Tian Z; Yang X; Giles M; Wang T; Gao H; Butker E; Liu T; Kahn S
    Med Phys; 2020 Apr; 47(4):1523-1532. PubMed ID: 32027029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forward treatment planning techniques to reduce the normalization effect in Gamma Knife radiosurgery.
    Cheng HW; Lo WL; Kuo CY; Su YK; Tsai JT; Lin JW; Wang YJ; Pan DH
    J Appl Clin Med Phys; 2017 Nov; 18(6):114-122. PubMed ID: 28960724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dosimetric characterization of hypofractionated Gamma Knife radiosurgery of large or complex brain tumors versus linear accelerator-based treatments.
    Dong P; Pérez-Andújar A; Pinnaduwage D; Braunstein S; Theodosopoulos P; McDermott M; Sneed P; Ma L
    J Neurosurg; 2016 Dec; 125(Suppl 1):97-103. PubMed ID: 27903198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superimposition of beams to vary shot size in gamma knife stereotactic radiosurgery.
    Bank MI; Timmerman R
    J Appl Clin Med Phys; 2002; 3(1):19-25. PubMed ID: 11818001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time inverse planning for Gamma Knife radiosurgery.
    Wu QJ; Chankong V; Jitprapaikulsarn S; Wessels BW; Einstein DB; Mathayomchan B; Kinsella TJ
    Med Phys; 2003 Nov; 30(11):2988-95. PubMed ID: 14655946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A technique to sharpen the beam penumbra for Gamma Knife radiosurgery.
    Guerrero M; Li XA; Ma L
    Phys Med Biol; 2003 Jun; 48(12):1843-53. PubMed ID: 12870587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing computerized treatment planning for the Gamma Knife by source culling.
    Luo L; Shu H; Yu W; Yan Y; Bao X; Fu Y
    Int J Radiat Oncol Biol Phys; 1999 Dec; 45(5):1339-46. PubMed ID: 10613331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverse treatment planning for Gamma Knife radiosurgery.
    Shepard DM; Ferris MC; Ove R; Ma L
    Med Phys; 2000 Dec; 27(12):2748-56. PubMed ID: 11190958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of normal brain integral dose and normal tissue complication probability on the prescription isodose values for gamma-knife radiosurgery.
    Ma L
    Phys Med Biol; 2001 Nov; 46(11):3031-41. PubMed ID: 11720361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying and improving the efficiency of Gamma Knife treatment plans for brain metastases: results of a 1-year audit.
    Wright G; Hatfield P; Loughrey C; Reiner B; Bownes P
    J Neurosurg; 2014 Dec; 121 Suppl():44-50. PubMed ID: 25434936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical implementation of an automated planning system for gamma knife radiosurgery.
    Shepard DM; Chin LS; DiBiase SJ; Naqvi SA; Lim J; Ferris MC
    Int J Radiat Oncol Biol Phys; 2003 Aug; 56(5):1488-94. PubMed ID: 12873694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An empirical model for independent dose verification of the Gamma Knife treatment planning.
    Phaisangittisakul N; Ma L
    Med Phys; 2002 Sep; 29(9):1991-7. PubMed ID: 12349920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional dose verification of the clinical application of gamma knife stereotactic radiosurgery using polymer gel and MRI.
    Papagiannis P; Karaiskos P; Kozicki M; Rosiak JM; Sakelliou L; Sandilos P; Seimenis I; Torrens M
    Phys Med Biol; 2005 May; 50(9):1979-90. PubMed ID: 15843731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.