These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30671579)

  • 1. Underpinning transport phenomena for the patterning of biomolecules.
    Pereiro I; Cors JF; Pané S; Nelson BJ; Kaigala GV
    Chem Soc Rev; 2019 Mar; 48(5):1236-1254. PubMed ID: 30671579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biopatterning: The Art of Patterning Biomolecules on Surfaces.
    Delamarche E; Pereiro I; Kashyap A; Kaigala GV
    Langmuir; 2021 Aug; 37(32):9637-9651. PubMed ID: 34347483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell patterning through inkjet printing of one cell per droplet.
    Yamaguchi S; Ueno A; Akiyama Y; Morishima K
    Biofabrication; 2012 Dec; 4(4):045005. PubMed ID: 23075800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA Bipedal Motor Achieves a Large Number of Steps Due to Operation Using Microfluidics-Based Interface.
    Tomov TE; Tsukanov R; Glick Y; Berger Y; Liber M; Avrahami D; Gerber D; Nir E
    ACS Nano; 2017 Apr; 11(4):4002-4008. PubMed ID: 28402651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein immobilization on Ni(II) ion patterns prepared by microcontact printing and dip-pen nanolithography.
    Wu CC; Reinhoudt DN; Otto C; Velders AH; Subramaniam V
    ACS Nano; 2010 Feb; 4(2):1083-91. PubMed ID: 20104881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible method for fabricating protein patterns on superhydrophobic platforms controlled by magnetic field.
    Wang J; Li H; Zou H; Wang C; Zhang H; Mano JF; Song W
    Biomater Sci; 2017 Feb; 5(3):408-411. PubMed ID: 28128822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing.
    Knowlton S; Yenilmez B; Tasoglu S
    Trends Biotechnol; 2016 Sep; 34(9):685-688. PubMed ID: 27424152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically functionalized surface patterning.
    Zhou X; Boey F; Huo F; Huang L; Zhang H
    Small; 2011 Aug; 7(16):2273-89. PubMed ID: 21678549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lab on a chip technologies for algae detection: a review.
    Schaap A; Rohrlack T; Bellouard Y
    J Biophotonics; 2012 Aug; 5(8-9):661-72. PubMed ID: 22693123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Bioprinting: Emerging Technology in Cardiovascular Medicine.
    Ameri K; Samurkashian R; Yeghiazarians Y
    Circulation; 2017 Apr; 135(14):1281-1283. PubMed ID: 28373522
    [No Abstract]   [Full Text] [Related]  

  • 11. Straightforward Micropatterning of Oligonucleotides in Microfluidics by Novel Spin-On ZrO₂ Surfaces.
    Della Giustina G; Zambon A; Lamberti F; Elvassore N; Brusatin G
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13280-8. PubMed ID: 26017394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell patterning by laser-assisted bioprinting.
    Devillard R; Pagès E; Correa MM; Kériquel V; Rémy M; Kalisky J; Ali M; Guillotin B; Guillemot F
    Methods Cell Biol; 2014; 119():159-74. PubMed ID: 24439284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioprinting and Organ-on-Chip Applications Towards Personalized Medicine for Bone Diseases.
    Arrigoni C; Gilardi M; Bersini S; Candrian C; Moretti M
    Stem Cell Rev Rep; 2017 Jun; 13(3):407-417. PubMed ID: 28589446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterning multiplex protein microarrays in a single microfluidic channel.
    Didar TF; Foudeh AM; Tabrizian M
    Anal Chem; 2012 Jan; 84(2):1012-8. PubMed ID: 22124457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microchemical Pen: An Open Microreactor for Region-Selective Surface Modification.
    Mao S; Sato C; Suzuki Y; Yang J; Zeng H; Nakajima H; Yang M; Lin JM; Uchiyama K
    Chemphyschem; 2016 Oct; 17(20):3155-3159. PubMed ID: 27505180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology.
    Lee H; Cho DW
    Lab Chip; 2016 Jul; 16(14):2618-25. PubMed ID: 27302471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.
    Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C
    Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging and spectroscopic comparison of multi-step methods to form DNA arrays based on the biotin-streptavidin system.
    Gajos K; Petrou P; Budkowski A; Awsiuk K; Bernasik A; Misiakos K; Rysz J; Raptis I; Kakabakos S
    Analyst; 2015 Feb; 140(4):1127-39. PubMed ID: 25535629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microvalve-based bioprinting - process, bio-inks and applications.
    Ng WL; Lee JM; Yeong WY; Win Naing M
    Biomater Sci; 2017 Mar; 5(4):632-647. PubMed ID: 28198902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J; Ellis AV; Voelcker NH
    Electrophoresis; 2010 Jan; 31(1):2-16. PubMed ID: 20039289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.