These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30671619)

  • 1. Impacts of global warming on confined livestock systems for growing-fattening pigs: simulation of heat stress for 1981 to 2017 in Central Europe.
    Mikovits C; Zollitsch W; Hörtenhuber SJ; Baumgartner J; Niebuhr K; Piringer M; Anders I; Andre K; Hennig-Pauka I; Schönhart M; Schauberger G
    Int J Biometeorol; 2019 Feb; 63(2):221-230. PubMed ID: 30671619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady-state balance model to calculate the indoor climate of livestock buildings, demonstrated for finishing pigs.
    Schauberger G; Piringer M; Petz E
    Int J Biometeorol; 2000 Mar; 43(4):154-62. PubMed ID: 10789916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation to hot climate and strategies to alleviate heat stress in livestock production.
    Renaudeau D; Collin A; Yahav S; de Basilio V; Gourdine JL; Collier RJ
    Animal; 2012 May; 6(5):707-28. PubMed ID: 22558920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change vulnerability of confined livestock systems predicted using bioclimatic indexes in an arid region of México.
    Theusme C; Avendaño-Reyes L; Macías-Cruz U; Correa-Calderón A; García-Cueto RO; Mellado M; Vargas-Villamil L; Vicente-Pérez A
    Sci Total Environ; 2021 Jan; 751():141779. PubMed ID: 32890800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An overview of heat stress relief with global warming in perspective.
    Berman A
    Int J Biometeorol; 2019 Apr; 63(4):493-498. PubMed ID: 30739158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of trailer heat zones and associated heat stress in weaner pigs transported by road in tropical climates.
    Machado NAF; Martin JE; Barbosa-Filho JAD; Dias CTS; Pinheiro DG; de Oliveira KPL; Souza-Junior JBF
    J Therm Biol; 2021 Apr; 97():102882. PubMed ID: 33863446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A methodology for mapping current and future heat stress risk in pigs.
    Mutua JY; Marshall K; Paul BK; Notenbaert AMO
    Animal; 2020 Sep; 14(9):1952-1960. PubMed ID: 32349852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increases in extreme heat stress in domesticated livestock species during the twenty-first century.
    Thornton P; Nelson G; Mayberry D; Herrero M
    Glob Chang Biol; 2021 Nov; 27(22):5762-5772. PubMed ID: 34410027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model for understanding thermal hysteresis during heat stress: a matter of direction.
    Parkhurst AM
    Int J Biometeorol; 2010 Nov; 54(6):637-45. PubMed ID: 20140629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short communication: Comparison of ambient temperature, relative humidity, and temperature-humidity index between on-farm measurements and official meteorological data.
    Schüller LK; Burfeind O; Heuwieser W
    J Dairy Sci; 2013; 96(12):7731-8. PubMed ID: 24140331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ventilation behaviour on indoor heat load based on test reference years.
    Rosenfelder M; Koppe C; Pfafferott J; Matzarakis A
    Int J Biometeorol; 2016 Feb; 60(2):277-87. PubMed ID: 26049286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of indoor heat stress variability in summer and during heat warnings: a case study using the UTCI in Berlin, Germany.
    Walikewitz N; Jänicke B; Langner M; Endlicher W
    Int J Biometeorol; 2018 Jan; 62(1):29-42. PubMed ID: 26423527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effect of suction and pressure type of ventilation on the microclimate of fattening stations and on the production performance of pigs].
    Drybcák J
    Vet Med (Praha); 1980 Apr; 25(4):205-11. PubMed ID: 6773207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occupational heat stress assessment and protective strategies in the context of climate change.
    Gao C; Kuklane K; Östergren PO; Kjellstrom T
    Int J Biometeorol; 2018 Mar; 62(3):359-371. PubMed ID: 28444505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transgenerational transmission of environmental effects in livestock in the age of global warming.
    Gershoni M
    Cell Stress Chaperones; 2023 Sep; 28(5):445-454. PubMed ID: 36715961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Animal thermal comfort indexes in silvopastoral systems with different tree arrangements.
    Pezzopane JRM; Nicodemo MLF; Bosi C; Garcia AR; Lulu J
    J Therm Biol; 2019 Jan; 79():103-111. PubMed ID: 30612670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bill E. Kunkle Interdisciplinary Beef Symposium: Animal welfare concerns for cattle exposed to adverse environmental conditions.
    Mader TL
    J Anim Sci; 2014 Dec; 92(12):5319-24. PubMed ID: 25414102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Animal health aspects of adaptation to climate change: beating the heat and parasites in a warming Europe.
    Skuce PJ; Morgan ER; van Dijk J; Mitchell M
    Animal; 2013 Jun; 7 Suppl 2():333-45. PubMed ID: 23739475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a Generic Residential Building Model for Heat-Health Warning Systems.
    Pfafferott J; Rißmann S; Halbig G; Schröder F; Saad S
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of Artificial Intelligence for Heat Stress Management in Ruminant Livestock.
    Rebez EB; Sejian V; Silpa MV; Kalaignazhal G; Thirunavukkarasu D; Devaraj C; Nikhil KT; Ninan J; Sahoo A; Lacetera N; Dunshea FR
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.