These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 30671652)

  • 1. A bioactive nano-calcium phosphate paste for in-situ transfection of BMP-7 and VEGF-A in a rabbit critical-size bone defect: results of an in vivo study.
    Schlickewei C; Klatte TO; Wildermuth Y; Laaff G; Rueger JM; Ruesing J; Chernousova S; Lehmann W; Epple M
    J Mater Sci Mater Med; 2019 Jan; 30(2):15. PubMed ID: 30671652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone augmentation using a new injectable bone graft substitute by combining calcium phosphate and bisphosphonate as composite--an animal model.
    Schlickewei CW; Laaff G; Andresen A; Klatte TO; Rueger JM; Ruesing J; Epple M; Lehmann W
    J Orthop Surg Res; 2015 Jul; 10():116. PubMed ID: 26205381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repair of rabbit radial bone defects using bone morphogenetic protein-2 combined with 3D porous silk fibroin/β-tricalcium phosphate hybrid scaffolds.
    Song J; Kim J; Woo HM; Yoon B; Park H; Park C; Kang BJ
    J Biomater Sci Polym Ed; 2018 Apr; 29(6):716-729. PubMed ID: 29405844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closure of rabbit calvarial critical-sized defects using protective composite allogeneic and alloplastic bone substitutes.
    Haddad AJ; Peel SA; Clokie CM; Sándor GK
    J Craniofac Surg; 2006 Sep; 17(5):926-34. PubMed ID: 17003622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. rhBMP-2 delivered in a calcium phosphate cement accelerates bridging of critical-sized defects in rabbit radii.
    Seeherman HJ; Azari K; Bidic S; Rogers L; Li XJ; Hollinger JO; Wozney JM
    J Bone Joint Surg Am; 2006 Jul; 88(7):1553-65. PubMed ID: 16818982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone healing in rabbit calvarial critical-sized defects filled with stem cells and growth factors combined with granular or solid scaffolds.
    Lappalainen OP; Karhula S; Haapea M; Kyllönen L; Haimi S; Miettinen S; Saarakkala S; Korpi J; Ylikontiola LP; Serlo WS; Sándor GK
    Childs Nerv Syst; 2016 Apr; 32(4):681-8. PubMed ID: 26782995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal response of an injectable calcium phosphate material in a critical size defect.
    Landeck JT; Walsh WR; Oliver RA; Wang T; Gordon MR; Ahn E; White CD
    J Orthop Surg Res; 2021 Aug; 16(1):496. PubMed ID: 34389027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histomorphometric and mineral degradation study of Ossceram: a novel biphasic B-tricalcium phosphate, in critical size defects in rabbits.
    Calvo-Guirado JL; Delgado-Ruíz RA; Ramírez-Fernández MP; Maté-Sánchez JE; Ortiz-Ruiz A; Marcus A
    Clin Oral Implants Res; 2012 Jun; 23(6):667-675. PubMed ID: 21492238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone regenerative efficacy of biphasic calcium phosphate collagen composite as a carrier of rhBMP-2.
    Lee EU; Lim HC; Hong JY; Lee JS; Jung UW; Choi SH
    Clin Oral Implants Res; 2016 Nov; 27(11):e91-e99. PubMed ID: 25675839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF.
    Amirian J; Linh NT; Min YK; Lee BT
    Int J Biol Macromol; 2015 May; 76():10-24. PubMed ID: 25709009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cartilage repair and subchondral bone reconstruction based on three-dimensional printing technique].
    Zhang W; Lian Q; Li D; Wang K; Jin Z; Bian W; Liu Y; He J; Wang L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):318-24. PubMed ID: 24844012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Study of BMP-2-Loaded Bipotential Electrolytic Complex around a Biphasic Calcium Phosphate-Derived (BCP) Scaffold for Repair of Large Segmental Bone Defect.
    Paul K; Padalhin AR; Linh NT; Kim B; Sarkar SK; Lee BT
    PLoS One; 2016; 11(10):e0163708. PubMed ID: 27711142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of TriCalcium Phosphate (TCP) and stem cells for the regeneration of osteoperiosteal critical-size mandibular bony defects, an in vitro and preclinical study.
    Alfotawei R; Naudi KB; Lappin D; Barbenel J; Di Silvio L; Hunter K; McMahon J; Ayoub A
    J Craniomaxillofac Surg; 2014 Sep; 42(6):863-9. PubMed ID: 24485270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced bone regeneration with a novel synthetic bone substitute in combination with a new natural cross-linked collagen membrane: radiographic and histomorphometric study.
    Calvo-Guirado JL; Ramírez-Fernández MP; Maté-Sánchez JE; Bruno N; Velasquez P; de Aza PN
    Clin Oral Implants Res; 2015 Apr; 26(4):454-464. PubMed ID: 24720519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head.
    Zhang HX; Zhang XP; Xiao GY; Hou Y; Cheng L; Si M; Wang SS; Li YH; Nie L
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():298-307. PubMed ID: 26706534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone regeneration in experimental animals using calcium phosphate cement combined with platelet growth factors and human growth hormone.
    Emilov-Velev K; Clemente-de-Arriba C; Alobera-García MÁ; Moreno-Sansalvador EM; Campo-Loarte J
    Rev Esp Cir Ortop Traumatol; 2015; 59(3):200-10. PubMed ID: 25440455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of biphasic β-TCP with and without the use of collagen membranes on bone healing of surgically critical size defects. A radiological, histological, and histomorphometric study.
    Calvo-Guirado JL; Ramírez-Fernández MP; Delgado-Ruíz RA; Maté-Sánchez JE; Velasquez P; de Aza PN
    Clin Oral Implants Res; 2014 Nov; 25(11):1228-1238. PubMed ID: 24025159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of moldable, in situ hardening calcium phosphate bone graft substitutes.
    Schmidlin PR; Nicholls F; Kruse A; Zwahlen RA; Weber FE
    Clin Oral Implants Res; 2013 Feb; 24(2):149-57. PubMed ID: 22092691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate.
    Liu G; Zhao L; Zhang W; Cui L; Liu W; Cao Y
    J Mater Sci Mater Med; 2008 Jun; 19(6):2367-76. PubMed ID: 18158615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.