These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30672092)

  • 21. Sclerotinia sclerotiorum Response to Long Exposure to Glucosinolate Hydrolysis Products by Transcriptomic Approach.
    Madloo P; Lema M; Cartea ME; Soengas P
    Microbiol Spectr; 2021 Sep; 9(1):e0018021. PubMed ID: 34259546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptome analyses suggest a disturbance of iron homeostasis in soybean leaves during white mould disease establishment.
    Calla B; Blahut-Beatty L; Koziol L; Simmonds DH; Clough SJ
    Mol Plant Pathol; 2014 Aug; 15(6):576-88. PubMed ID: 24330102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus.
    Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y
    Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum.
    Chacón-Orozco JG; Bueno CJ; Shapiro-Ilan DI; Hazir S; Leite LG; Harakava R
    Sci Rep; 2020 Nov; 10(1):20649. PubMed ID: 33244079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction between Brassica napus polygalacturonase inhibition proteins and Sclerotinia sclerotiorum polygalacturonase: implications for rapeseed resistance to fungal infection.
    Wang Z; Wan L; Zhang X; Xin Q; Song Y; Hong D; Sun Y; Yang G
    Planta; 2021 Jan; 253(2):34. PubMed ID: 33459878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.
    Joshi RK; Megha S; Rahman MH; Basu U; Kav NN
    Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sclerotinia sclerotiorum utilizes host-derived copper for ROS detoxification and infection.
    Ding Y; Mei J; Chai Y; Yang W; Mao Y; Yan B; Yu Y; Disi JO; Rana K; Li J; Qian W
    PLoS Pathog; 2020 Oct; 16(10):e1008919. PubMed ID: 33002079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection.
    Liu F; Li X; Wang M; Wen J; Yi B; Shen J; Ma C; Fu T; Tu J
    Plant Biotechnol J; 2018 Apr; 16(4):911-925. PubMed ID: 28929638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum.
    Yang G; Tang L; Gong Y; Xie J; Fu Y; Jiang D; Li G; Collinge DB; Chen W; Cheng J
    New Phytol; 2018 Jan; 217(2):739-755. PubMed ID: 29076546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SsSm1, a Cerato-platanin family protein, is involved in the hyphal development and pathogenic process of Sclerotinia sclerotiorum.
    Pan Y; Wei J; Yao C; Reng H; Gao Z
    Plant Sci; 2018 May; 270():37-46. PubMed ID: 29576085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Melatonin elevated Sclerotinia sclerotiorum resistance via modulation of ATP and glucosinolate biosynthesis in Brassica rapa ssp. pekinensis.
    Teng Z; Yu Y; Zhu Z; Hong SB; Yang B; Zang Y
    J Proteomics; 2021 Jul; 243():104264. PubMed ID: 33992838
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression polymorphism at the ARPC4 locus links the actin cytoskeleton with quantitative disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana.
    Badet T; Léger O; Barascud M; Voisin D; Sadon P; Vincent R; Le Ru A; Balagué C; Roby D; Raffaele S
    New Phytol; 2019 Apr; 222(1):480-496. PubMed ID: 30393937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach.
    Iquira E; Humira S; François B
    BMC Plant Biol; 2015 Jan; 15():5. PubMed ID: 25595526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overexpression of a Chitinase Gene from Trichoderma asperellum Increases Disease Resistance in Transgenic Soybean.
    Zhang F; Ruan X; Wang X; Liu Z; Hu L; Li C
    Appl Biochem Biotechnol; 2016 Dec; 180(8):1542-1558. PubMed ID: 27544774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Knockout of the lignin pathway gene BnF5H decreases the S/G lignin compositional ratio and improves Sclerotinia sclerotiorum resistance in Brassica napus.
    Cao Y; Yan X; Ran S; Ralph J; Smith RA; Chen X; Qu C; Li J; Liu L
    Plant Cell Environ; 2022 Jan; 45(1):248-261. PubMed ID: 34697825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ANGUSTIFOLIA negatively regulates resistance to Sclerotinia sclerotiorum via modulation of PTI and JA signalling pathways in Arabidopsis thaliana.
    Gao X; Dang X; Yan F; Li Y; Xu J; Tian S; Li Y; Huang K; Lin W; Lin D; Wang Z; Wang A
    Mol Plant Pathol; 2022 Aug; 23(8):1091-1106. PubMed ID: 35426480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptome analysis of the plant pathogen Sclerotinia sclerotiorum interaction with resistant and susceptible canola (Brassica napus) lines.
    Chittem K; Yajima WR; Goswami RS; Del Río Mendoza LE
    PLoS One; 2020; 15(3):e0229844. PubMed ID: 32160211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid identification of an Arabidopsis NLR gene as a candidate conferring susceptibility to Sclerotinia sclerotiorum using time-resolved automated phenotyping.
    Barbacci A; Navaud O; Mbengue M; Barascud M; Godiard L; Khafif M; Lacaze A; Raffaele S
    Plant J; 2020 Jul; 103(2):903-917. PubMed ID: 32170798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Attack modes and defence reactions in pathosystems involving Sclerotinia sclerotiorum, Brassica carinata, B. juncea and B. napus.
    Uloth MB; Clode PL; You MP; Barbetti MJ
    Ann Bot; 2016 Jan; 117(1):79-95. PubMed ID: 26420204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.