BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30672126)

  • 1. Boron Subphthalocyanines and Silicon Phthalocyanines for Use as Active Materials in Organic Photovoltaics.
    Grant TM; Josey DS; Sampson KL; Mudigonda T; Bender TP; Lessard BH
    Chem Rec; 2019 Jun; 19(6):1093-1112. PubMed ID: 30672126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boron subphthalocyanines as organic electronic materials.
    Morse GE; Bender TP
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5055-68. PubMed ID: 22979940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Rise of Silicon Phthalocyanine: From Organic Photovoltaics to Organic Thin Film Transistors.
    Lessard BH
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31321-31330. PubMed ID: 34197065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating thiophene electron-donor layers for the rapid assessment of boron subphthalocyanines as electron acceptors in organic photovoltaics: solution or vacuum deposition?
    Josey DS; Castrucci JS; Dang JD; Lessard BH; Bender TP
    Chemphyschem; 2015 Apr; 16(6):1245-50. PubMed ID: 25765007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isomer Effects of Fullerene Derivatives on Organic Photovoltaics and Perovskite Solar Cells.
    Umeyama T; Imahori H
    Acc Chem Res; 2019 Aug; 52(8):2046-2055. PubMed ID: 31318521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bis(trialkylsilyl oxide) Silicon Phthalocyanines: Understanding the Role of Solubility in Device Performance as Ternary Additives in Organic Photovoltaics.
    Vebber MC; Grant TM; Brusso JL; Lessard BH
    Langmuir; 2020 Mar; 36(10):2612-2621. PubMed ID: 32093478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial Engineering and Outdoor Stability Assessment of "Gray/Black" Fullerene-Free Organic Photovoltaics Based on Only Two Complementary Absorbing Materials: A Tetrabenzotriazacorrole and a Subphthalocyanine.
    Raboui H; Josey DS; Jin Y; Bender TP
    ACS Omega; 2020 Oct; 5(39):25264-25272. PubMed ID: 33043204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and application of trifluoroethoxy-substituted phthalocyanines and subphthalocyanines.
    Mori S; Shibata N
    Beilstein J Org Chem; 2017; 13():2273-2296. PubMed ID: 29114331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thin-Film Engineering of Solution-Processable n-Type Silicon Phthalocyanines for Organic Thin-Film Transistors.
    Cranston RR; Vebber MC; Berbigier JF; Rice NA; Tonnelé C; Comeau ZJ; Boileau NT; Brusso JL; Shuhendler AJ; Castet F; Muccioli L; Kelly TL; Lessard BH
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1008-1020. PubMed ID: 33370100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution-Processable Silicon Phthalocyanines in Electroluminescent and Photovoltaic Devices.
    Zysman-Colman E; Ghosh SS; Xie G; Varghese S; Chowdhury M; Sharma N; Cordes DB; Slawin AM; Samuel ID
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9247-53. PubMed ID: 26990151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boron Subphthalocyanines as Triplet Harvesting Materials within Organic Photovoltaics.
    Castrucci JS; Josey DS; Thibau E; Lu ZH; Bender TP
    J Phys Chem Lett; 2015 Aug; 6(15):3121-5. PubMed ID: 26267212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small molecule semiconductors for high-efficiency organic photovoltaics.
    Lin Y; Li Y; Zhan X
    Chem Soc Rev; 2012 Jun; 41(11):4245-72. PubMed ID: 22453295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variance-resistant PTB7 and axially-substituted silicon phthalocyanines as active materials for high-Voc organic photovoltaics.
    Vebber MC; Rice NA; Brusso JL; Lessard BH
    Sci Rep; 2021 Jul; 11(1):15347. PubMed ID: 34321540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. n-Type Molecular Photovoltaic Materials: Design Strategies and Device Applications.
    Yue Q; Liu W; Zhu X
    J Am Chem Soc; 2020 Jul; 142(27):11613-11628. PubMed ID: 32460485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ladder-Type Heteroarene-Based Organic Semiconductors.
    Chen J; Yang K; Zhou X; Guo X
    Chem Asian J; 2018 Sep; 13(18):2587-2600. PubMed ID: 29911315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of non-fullerene polymer solar cells: from device physics to morphology control.
    Gurney RS; Lidzey DG; Wang T
    Rep Prog Phys; 2019 Mar; 82(3):036601. PubMed ID: 30731432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An N-ethylated barbituric acid end-capped bithiophene as an electron-acceptor material in fullerene-free organic photovoltaics.
    Sullivan P; Collis GE; Rochford LA; Arantes JF; Kemppinen P; Jones TS; Winzenberg KN
    Chem Commun (Camb); 2015 Apr; 51(28):6222-5. PubMed ID: 25761144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon phthalocyanines: synthesis and resurgent applications.
    Mitra K; Hartman MCT
    Org Biomol Chem; 2021 Feb; 19(6):1168-1190. PubMed ID: 33475120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boron subphthalocyanine polymers by facile coupling to poly(acrylic acid-ran-styrene) copolymers synthesized by nitroxide-mediated polymerization and the associated problems with autoinitiation.
    Lessard BH; Bender TP
    Macromol Rapid Commun; 2013 Apr; 34(7):568-73. PubMed ID: 23386322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneity in polymer solar cells: local morphology and performance in organic photovoltaics studied with scanning probe microscopy.
    Groves C; Reid OG; Ginger DS
    Acc Chem Res; 2010 May; 43(5):612-20. PubMed ID: 20143815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.