These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

625 related articles for article (PubMed ID: 30672565)

  • 21. Rational design of 2D MBene-based bifunctional OER/ORR dual-metal atom catalysts: a DFT study.
    Mou Y; Wang Y; Wan J; Yao G; Feng C; Zhang H; Wang Y
    Phys Chem Chem Phys; 2023 Nov; 25(42):29135-29142. PubMed ID: 37869987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Co-Doped Ni
    Wang M; Ma W; Lv Z; Liu D; Jian K; Dang J
    J Phys Chem Lett; 2021 Feb; 12(6):1581-1587. PubMed ID: 33539095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. General π-Electron-Assisted Strategy for Ir, Pt, Ru, Pd, Fe, Ni Single-Atom Electrocatalysts with Bifunctional Active Sites for Highly Efficient Water Splitting.
    Lai WH; Zhang LF; Hua WB; Indris S; Yan ZC; Hu Z; Zhang B; Liu Y; Wang L; Liu M; Liu R; Wang YX; Wang JZ; Hu Z; Liu HK; Chou SL; Dou SX
    Angew Chem Int Ed Engl; 2019 Aug; 58(34):11868-11873. PubMed ID: 31173428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrogen-Doped Graphene on Transition Metal Substrates as Efficient Bifunctional Catalysts for Oxygen Reduction and Oxygen Evolution Reactions.
    Zhou S; Liu N; Wang Z; Zhao J
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22578-22587. PubMed ID: 28621128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical insight into single Rh atoms anchored on N-doped γ-graphyne as an excellent bifunctional electrocatalyst for the OER and ORR: electronic regulation of graphitic nitrogen.
    Qin Y; Yang M; Deng C; Shen W; He R; Li M
    Nanoscale; 2021 Mar; 13(11):5800-5808. PubMed ID: 33710226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Constructing highly efficient bifunctional catalysts for oxygen reduction and oxygen evolution by modifying MXene with transition metal.
    Dai Y; Zhao X; Zheng D; Zhao Q; Feng J; Feng Y; Ge X; Chen X
    J Colloid Interface Sci; 2024 Apr; 660():628-636. PubMed ID: 38266344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergistic trifunctional electrocatalysis of pyridinic nitrogen and single transition-metal atoms anchored on pyrazine-modified graphdiyne.
    Qi S; Wang J; Song X; Fan Y; Li W; Du A; Zhao M
    Sci Bull (Beijing); 2020 Jun; 65(12):995-1002. PubMed ID: 36659028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reasonable Design of MXene-Supported Dual-Atom Catalysts with High Catalytic Activity for Hydrogen Evolution and Oxygen Evolution Reaction: A First-Principles Investigation.
    Wang E; Guo M; Zhou J; Sun Z
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3d Transition metal doping induced charge rearrangement and transfer to enhance overall water-splitting on Ni
    Zhang M; Shao X; Liu L; Xu X; Pan J; Hu J
    RSC Adv; 2022 Sep; 12(41):26866-26874. PubMed ID: 36320836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting.
    Zheng X; Han X; Zhang Y; Wang J; Zhong C; Deng Y; Hu W
    Nanoscale; 2019 Mar; 11(12):5646-5654. PubMed ID: 30865205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene-supported MN
    Gao L; Wu D; Li S; Li H; Ma D
    J Colloid Interface Sci; 2024 Jul; 676():261-271. PubMed ID: 39029252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cation Exchange Strategy to Single-Atom Noble-Metal Doped CuO Nanowire Arrays with Ultralow Overpotential for H
    Xu H; Liu T; Bai S; Li L; Zhu Y; Wang J; Yang S; Li Y; Shao Q; Huang X
    Nano Lett; 2020 Jul; 20(7):5482-5489. PubMed ID: 32515969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-atom catalysts based on TiN for the electrocatalytic hydrogen evolution reaction: a theoretical study.
    He B; Shen J; Wang B; Lu Z; Ma D
    Phys Chem Chem Phys; 2021 Jul; 23(29):15685-15692. PubMed ID: 34270659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the Activity of Electrocatalysts toward the Hydrogen Evolution Reaction, the Oxygen Evolution Reaction, and the Oxygen Reduction Reaction via Modification of Metal and Ligand of Conductive Two-Dimensional Metal-Organic Frameworks.
    Zhou Y; Sheng L; Luo Q; Zhang W; Yang J
    J Phys Chem Lett; 2021 Dec; 12(48):11652-11658. PubMed ID: 34822246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MOF-Derived Noble Metal Free Catalysts for Electrochemical Water Splitting.
    Tao Z; Wang T; Wang X; Zheng J; Li X
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35390-35397. PubMed ID: 27966855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical insights into TM@PHEs as single-atom catalysts for water splitting based on density functional theory.
    Jiang Y; Zou W; Li Y; Cai Y
    Phys Chem Chem Phys; 2022 Jan; 24(2):975-981. PubMed ID: 34915549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single Atoms on a Nitrogen-Doped Boron Phosphide Monolayer: A New Promising Bifunctional Electrocatalyst for ORR and OER.
    Zeng H; Liu X; Chen F; Chen Z; Fan X; Lau W
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52549-52559. PubMed ID: 33172252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical study of Mo
    Lin L; Long X; Yang X; Shi P; Su L
    Phys Chem Chem Phys; 2023 Sep; 25(36):24721-24732. PubMed ID: 37670691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transition metal doped WSi
    Huang M; Jiang Y; Luo Z; Wang J; Ding Z; Guo X; Liu X; Wang Y
    J Phys Condens Matter; 2023 Sep; 35(48):. PubMed ID: 37665141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational screening of transition-metal doped boron nanotubes as efficient electrocatalysts for water splitting.
    Lu J; Hou X; Xiao B; Xu X; Mi J; Zhang P
    RSC Adv; 2022 Feb; 12(11):6841-6847. PubMed ID: 35424632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.