BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 30672596)

  • 1. Effects of growth conditions on siderophore producing bacteria and siderophore production from Indian Ocean sector of Southern Ocean.
    Sinha AK; Parli Venkateswaran B; Tripathy SC; Sarkar A; Prabhakaran S
    J Basic Microbiol; 2019 Apr; 59(4):412-424. PubMed ID: 30672596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-dependent growth of and siderophore production by two heterotrophic bacteria isolated from brackish water of the southern Baltic Sea.
    Cabaj A; Kosakowska A
    Microbiol Res; 2009; 164(5):570-7. PubMed ID: 17689229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron bacterial phylogeny and their execution towards iron availability in Equatorial Indian Ocean and coastal Arabian Sea.
    Rajasabapathy R; Mohandass C; Vijayaraj AS; Madival VV; Meena RM
    Pol J Microbiol; 2013; 62(4):391-400. PubMed ID: 24730134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxamate siderophores: occurrence and importance in the Atlantic Ocean.
    Mawji E; Gledhill M; Milton JA; Tarran GA; Ussher S; Thompson A; Wolff GA; Worsfold PJ; Achterberg EP
    Environ Sci Technol; 2008 Dec; 42(23):8675-80. PubMed ID: 19192780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean.
    Boiteau RM; Mende DR; Hawco NJ; McIlvin MR; Fitzsimmons JN; Saito MA; Sedwick PN; DeLong EF; Repeta DJ
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14237-14242. PubMed ID: 27911777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical and structural characterization of hydroxamate siderophore produced by marine Vibrio harveyi.
    Murugappan RM; Aravinth A; Karthikeyan M
    J Ind Microbiol Biotechnol; 2011 Feb; 38(2):265-73. PubMed ID: 20602146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of exogenous siderophores on iron uptake activity of marine bacteria under iron-limited conditions.
    Guan LL; Kanoh K; Kamino K
    Appl Environ Microbiol; 2001 Apr; 67(4):1710-7. PubMed ID: 11282625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marine siderophores and microbial iron mobilization.
    Butler A
    Biometals; 2005 Aug; 18(4):369-74. PubMed ID: 16158229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands.
    Barbeau K; Rue EL; Bruland KW; Butler A
    Nature; 2001 Sep; 413(6854):409-13. PubMed ID: 11574885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of dissolved iron and bacteria producing the photoactive siderophore, vibrioferrin, in waters off Southern California and Northern Baja.
    Yarimizu K; Cruz-López R; García-Mendoza E; Edwards M; Carter ML; Carrano CJ
    Biometals; 2019 Feb; 32(1):139-154. PubMed ID: 30623317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of photoactive siderophore biosynthetic genes in the marine environment.
    Gärdes A; Triana C; Amin SA; Green DH; Romano A; Trimble L; Carrano CJ
    Biometals; 2013 Jun; 26(3):507-16. PubMed ID: 23700243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Siderophore cross-utilization amongst rhizospheric bacteria and the role of their differential affinities for Fe3+ on growth stimulation under iron-limited conditions.
    Joshi F; Archana G; Desai A
    Curr Microbiol; 2006 Aug; 53(2):141-7. PubMed ID: 16845564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron transporters in marine prokaryotic genomes and metagenomes.
    Hopkinson BM; Barbeau KA
    Environ Microbiol; 2012 Jan; 14(1):114-28. PubMed ID: 21883791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical characterization and quantification of siderophores produced by marine and terrestrial aspergilli.
    Vala AK; Dave BP; Dube HC
    Can J Microbiol; 2006 Jun; 52(6):603-7. PubMed ID: 16788730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination Chemistry of Microbial Iron Transport.
    Raymond KN; Allred BE; Sia AK
    Acc Chem Res; 2015 Sep; 48(9):2496-505. PubMed ID: 26332443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial response to siderophore and quorum-sensing chemical signals in the seawater microbial community.
    Guan LL; Kamino K
    BMC Microbiol; 2001; 1():27. PubMed ID: 11716787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Siderophore cross-utilization amongst nodule isolates of the cowpea miscellany group and its effect on plant growth in the presence of antagonistic organisms.
    Joshi FR; Kholiya SP; Archana G; Desai AJ
    Microbiol Res; 2008; 163(5):564-70. PubMed ID: 16962753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ocean acidification on iron availability to marine phytoplankton.
    Shi D; Xu Y; Hopkinson BM; Morel FM
    Science; 2010 Feb; 327(5966):676-9. PubMed ID: 20075213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence-based siderophore biosensor for the determination of bioavailable iron in oceanic waters.
    Chung Chun Lam CK; Jickells TD; Richardson DJ; Russell DA
    Anal Chem; 2006 Jul; 78(14):5040-5. PubMed ID: 16841927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of iron, growth temperature and plasmids on siderophore production in Aeromonas hydrophila.
    Naidu AJ; Yadav M
    J Med Microbiol; 1997 Oct; 46(10):833-8. PubMed ID: 9364139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.