These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30672735)

  • 1. S-cone photoreceptors in the primate retina are functionally distinct from L and M cones.
    Baudin J; Angueyra JM; Sinha R; Rieke F
    Elife; 2019 Jan; 8():. PubMed ID: 30672735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina.
    Tuten WS; Harmening WM; Sabesan R; Roorda A; Sincich LC
    J Neurosci; 2017 Sep; 37(39):9498-9509. PubMed ID: 28871030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connectomic Identification and Three-Dimensional Color Tuning of S-OFF Midget Ganglion Cells in the Primate Retina.
    Wool LE; Packer OS; Zaidi Q; Dacey DM
    J Neurosci; 2019 Oct; 39(40):7893-7909. PubMed ID: 31405926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina.
    Dacey DM; Crook JD; Packer OS
    Vis Neurosci; 2014 Mar; 31(2):139-51. PubMed ID: 23895762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular and Circuit Mechanisms Shaping the Perceptual Properties of the Primate Fovea.
    Sinha R; Hoon M; Baudin J; Okawa H; Wong ROL; Rieke F
    Cell; 2017 Jan; 168(3):413-426.e12. PubMed ID: 28129540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing Computation in the Primate Visual System at Single-Cone Resolution.
    Kling A; Field GD; Brainard DH; Chichilnisky EJ
    Annu Rev Neurosci; 2019 Jul; 42():169-186. PubMed ID: 30857477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative number of long- and middle-wavelength-sensitive cones in the human fovea.
    Krauskopf J
    J Opt Soc Am A Opt Image Sci Vis; 2000 Mar; 17(3):510-6. PubMed ID: 10708032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonselective Wiring Accounts for Red-Green Opponency in Midget Ganglion Cells of the Primate Retina.
    Wool LE; Crook JD; Troy JB; Packer OS; Zaidi Q; Dacey DM
    J Neurosci; 2018 Feb; 38(6):1520-1540. PubMed ID: 29305531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horizontal cells of the primate retina: cone specificity without spectral opponency.
    Dacey DM; Lee BB; Stafford DK; Pokorny J; Smith VC
    Science; 1996 Feb; 271(5249):656-9. PubMed ID: 8571130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel pathways for spectral coding in primate retina.
    Dacey DM
    Annu Rev Neurosci; 2000; 23():743-75. PubMed ID: 10845080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cost of cone coupling to trichromacy in primate fovea.
    Hsu A; Smith RG; Buchsbaum G; Sterling P
    J Opt Soc Am A Opt Image Sci Vis; 2000 Mar; 17(3):635-40. PubMed ID: 10708045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blue cone monochromacy: visual function and efficacy outcome measures for clinical trials.
    Luo X; Cideciyan AV; Iannaccone A; Roman AJ; Ditta LC; Jennings BJ; Yatsenko SA; Sheplock R; Sumaroka A; Swider M; Schwartz SB; Wissinger B; Kohl S; Jacobson SG
    PLoS One; 2015; 10(4):e0125700. PubMed ID: 25909963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the short wavelength-sensitive ("blue") cone mosaic in the primate retina: comparison of New World and Old World monkeys.
    Martin PR; GrĂ¼nert U
    J Comp Neurol; 1999 Mar; 406(1):1-14. PubMed ID: 10100889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cone deactivation kinetics and GRK1/GRK7 expression in enhanced S cone syndrome caused by mutations in NR2E3.
    Cideciyan AV; Jacobson SG; Gupta N; Osawa S; Locke KG; Weiss ER; Wright AF; Birch DG; Milam AH
    Invest Ophthalmol Vis Sci; 2003 Mar; 44(3):1268-74. PubMed ID: 12601058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue-yellow opponency in primate S cone photoreceptors.
    Packer OS; Verweij J; Li PH; Schnapf JL; Dacey DM
    J Neurosci; 2010 Jan; 30(2):568-72. PubMed ID: 20071519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings.
    Nikonov SS; Kholodenko R; Lem J; Pugh EN
    J Gen Physiol; 2006 Apr; 127(4):359-74. PubMed ID: 16567464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial summation of individual cones in human color vision.
    Schmidt BP; Boehm AE; Tuten WS; Roorda A
    PLoS One; 2019; 14(7):e0211397. PubMed ID: 31344029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Representation of cone signals in the primate retina.
    Calkins DJ
    J Opt Soc Am A Opt Image Sci Vis; 2000 Mar; 17(3):597-606. PubMed ID: 10708041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics.
    Schneeweis DM; Schnapf JL
    J Neurosci; 1999 Feb; 19(4):1203-16. PubMed ID: 9952398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of Rod and Cone Pathways to Retinal Direction Selectivity Through Development.
    Rosa JM; Morrie RD; Baertsch HC; Feller MB
    J Neurosci; 2016 Sep; 36(37):9683-95. PubMed ID: 27629718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.