These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30673156)

  • 1. Structure Sensitivity in the Electrocatalytic Reduction of CO
    Mezzavilla S; Horch S; Stephens IEL; Seger B; Chorkendorff I
    Angew Chem Int Ed Engl; 2019 Mar; 58(12):3774-3778. PubMed ID: 30673156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributors to Enhanced CO2 Electroreduction Activity and Stability in a Nanostructured Au Electrocatalyst.
    Kim H; Jeon HS; Jee MS; Nursanto EB; Singh JP; Chae K; Hwang YJ; Min BK
    ChemSusChem; 2016 Aug; 9(16):2097-102. PubMed ID: 27466025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO.
    Zhu W; Michalsky R; Metin Ö; Lv H; Guo S; Wright CJ; Sun X; Peterson AA; Sun S
    J Am Chem Soc; 2013 Nov; 135(45):16833-6. PubMed ID: 24156631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasmall Au nanocatalysts supported on nitrided carbon for electrocatalytic CO
    Jin L; Liu B; Wang P; Yao H; Achola LA; Kerns P; Lopes A; Yang Y; Ho J; Moewes A; Pei Y; He J
    Nanoscale; 2018 Aug; 10(30):14678-14686. PubMed ID: 30039128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO2 Reduction to CO in Water: Carbon Nanotube-Gold Nanohybrid as a Selective and Efficient Electrocatalyst.
    Huan TN; Prakash P; Simon P; Rousse G; Xu X; Artero V; Gravel E; Doris E; Fontecave M
    ChemSusChem; 2016 Sep; 9(17):2317-20. PubMed ID: 27492905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicted Structures of the Active Sites Responsible for the Improved Reduction of Carbon Dioxide by Gold Nanoparticles.
    Cheng T; Huang Y; Xiao H; Goddard WA
    J Phys Chem Lett; 2017 Jul; 8(14):3317-3320. PubMed ID: 28675927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Heteroleptic Gold Hydride Nanocluster for Efficient and Selective Electrocatalytic Reduction of CO
    Gao ZH; Wei K; Wu T; Dong J; Jiang DE; Sun S; Wang LS
    J Am Chem Soc; 2022 Mar; 144(12):5258-5262. PubMed ID: 35290736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of adsorbed oleylamine on gold catalysts during synthesis for highly selective electrocatalytic reduction of CO
    Gao M; Zhu Y; Liu Y; Wu K; Lu H; Tang S; Liu C; Yue H; Liang B; Yan J
    Chem Commun (Camb); 2020 Jun; 56(51):7021-7024. PubMed ID: 32451518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles.
    Chen Y; Li CW; Kanan MW
    J Am Chem Soc; 2012 Dec; 134(49):19969-72. PubMed ID: 23171134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How palladium inhibits CO poisoning during electrocatalytic formic acid oxidation and carbon dioxide reduction.
    Chen X; Granda-Marulanda LP; McCrum IT; Koper MTM
    Nat Commun; 2022 Jan; 13(1):38. PubMed ID: 35013444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc-Coordinated Nitrogen-Codoped Graphene as an Efficient Catalyst for Selective Electrochemical Reduction of CO
    Chen Z; Mou K; Yao S; Liu L
    ChemSusChem; 2018 Sep; 11(17):2944-2952. PubMed ID: 29956488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured Materials for Heterogeneous Electrocatalytic CO
    Zhang L; Zhao ZJ; Gong J
    Angew Chem Int Ed Engl; 2017 Sep; 56(38):11326-11353. PubMed ID: 28168799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avoiding Self-Poisoning: A Key Feature for the High Activity of Au/Mg(OH)
    Wang Y; Widmann D; Lehnert F; Gu D; Schüth F; Behm RJ
    Angew Chem Int Ed Engl; 2017 Aug; 56(32):9597-9602. PubMed ID: 28682007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchically porous Au nanostructures with interconnected channels for efficient mass transport in electrocatalytic CO
    Hyun G; Song JT; Ahn C; Ham Y; Cho D; Oh J; Jeon S
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5680-5685. PubMed ID: 32132207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The activation of gold and the water-gas shift reaction: insights from studies with model catalysts.
    Rodriguez JA; Senanayake SD; Stacchiola D; Liu P; Hrbek J
    Acc Chem Res; 2014 Mar; 47(3):773-82. PubMed ID: 24191672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Self-Assembled CO
    Vijayakumar A; Zhao Y; Zou J; Wang K; Lee CY; MacFarlane DR; Wang C; Wallace GG
    ChemSusChem; 2020 Sep; 13(18):5023-5030. PubMed ID: 32666707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallic nanocatalysts for electrochemical CO
    Wang Y; Niu C; Wang D
    J Colloid Interface Sci; 2018 Oct; 527():95-106. PubMed ID: 29783143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.
    Xu J; Kan Y; Huang R; Zhang B; Wang B; Wu KH; Lin Y; Sun X; Li Q; Centi G; Su D
    ChemSusChem; 2016 May; 9(10):1085-9. PubMed ID: 27100272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO.
    Rasul S; Anjum DH; Jedidi A; Minenkov Y; Cavallo L; Takanabe K
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2146-50. PubMed ID: 25537315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface science investigations of oxidative chemistry on gold.
    Gong J; Mullins CB
    Acc Chem Res; 2009 Aug; 42(8):1063-73. PubMed ID: 19588952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.