BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30673250)

  • 21. Electron tunneling in single crystals of Pseudomonas aeruginosa azurins.
    Crane BR; Di Bilio AJ; Winkler JR; Gray HB
    J Am Chem Soc; 2001 Nov; 123(47):11623-31. PubMed ID: 11716717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of intra- vs intermolecular long-range electron transfer in crystals of ruthenium-modified azurin.
    Gradinaru C; Crane BR
    J Phys Chem B; 2006 Oct; 110(41):20073-6. PubMed ID: 17034174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designed azurins show lower reorganization free energies for intraprotein electron transfer.
    Farver O; Marshall NM; Wherland S; Lu Y; Pecht I
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10536-40. PubMed ID: 23759745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mimicking protein-protein electron transfer: voltammetry of Pseudomonas aeruginosa azurin and the Thermus thermophilus Cu(A) domain at omega-derivatized self-assembled-monolayer gold electrodes.
    Fujita K; Nakamura N; Ohno H; Leigh BS; Niki K; Gray HB; Richards JH
    J Am Chem Soc; 2004 Nov; 126(43):13954-61. PubMed ID: 15506756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excited-state dynamics of structurally characterized [ReI(CO)3(phen)(HisX)]+ (X = 83, 109) Pseudomonas aeruginosa azurins in aqueous solution.
    Blanco-Rodríguez AM; Busby M; Gradinaru C; Crane BR; Di Bilio AJ; Matousek P; Towrie M; Leigh BS; Richards JH; Vlcek A; Gray HB
    J Am Chem Soc; 2006 Apr; 128(13):4365-70. PubMed ID: 16569013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron flow through biological molecules: does hole hopping protect proteins from oxidative damage?
    Winkler JR; Gray HB
    Q Rev Biophys; 2015 Nov; 48(4):411-20. PubMed ID: 26537399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of dimerization on protein electron transfer.
    van Amsterdam IM; Ubbink M; Jeuken LJ; Verbeet MP; Einsle O; Messerschmidt A; Canters GW
    Chemistry; 2001 Jun; 7(11):2398-406. PubMed ID: 11446642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoinduced electron transfer in singly labeled thiouredopyrenetrisulfonate azurin derivatives.
    Borovok N; Kotlyar AB; Pecht I; Skov LK; Farver O
    FEBS Lett; 1999 Aug; 457(2):277-82. PubMed ID: 10471793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The selenocysteine-substituted blue copper center: spectroscopic investigations of Cys112SeCys Pseudomonas aeruginosa azurin.
    Ralle M; Berry SM; Nilges MJ; Gieselman MD; van der Donk WA; Lu Y; Blackburn NJ
    J Am Chem Soc; 2004 Jun; 126(23):7244-56. PubMed ID: 15186162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Room-temperature phosphorescence from azurin derivatives. Phosphorescence quenching in oxidized native azurin.
    Klemens FK; McMillin DR
    Photochem Photobiol; 1992 May; 55(5):671-6. PubMed ID: 1528979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A quantitative description of the ground-state wave function of Cu(A) by X-ray absorption spectroscopy: comparison to plastocyanin and relevance to electron transfer.
    DeBeer George S; Metz M; Szilagyi RK; Wang H; Cramer SP; Lu Y; Tolman WB; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2001 Jun; 123(24):5757-67. PubMed ID: 11403610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectroscopic comparison of photogenerated tryptophan radicals in azurin: effects of local environment and structure.
    Shafaat HS; Leigh BS; Tauber MJ; Kim JE
    J Am Chem Soc; 2010 Jul; 132(26):9030-9. PubMed ID: 20536238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron-transfer acceleration investigated by time resolved infrared spectroscopy.
    Vlček A; Kvapilová H; Towrie M; Záliš S
    Acc Chem Res; 2015 Mar; 48(3):868-76. PubMed ID: 25699661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron tunneling in proteins: coupling through a beta strand.
    Langen R; Chang IJ; Germanas JP; Richards JH; Winkler JR; Gray HB
    Science; 1995 Jun; 268(5218):1733-5. PubMed ID: 7792598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of pH and ligand binding on the structure of the Cu site of the Met121Glu mutant of azurin from Pseudomonas aeruginosa.
    Strange RW; Murphy LM; Karlsson BG; Reinhammar B; Hasnain SS
    Biochemistry; 1996 Dec; 35(50):16391-8. PubMed ID: 8973215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of driving force on intramolecular electron transfer in proteins. Studies on single-site mutated azurins.
    Farver O; Skov LK; van de Kamp M; Canters GW; Pecht I
    Eur J Biochem; 1992 Dec; 210(2):399-403. PubMed ID: 1459124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Redox properties of an engineered purple Cu(A) azurin.
    Sun D; Wang X; Davidson VL
    Arch Biochem Biophys; 2002 Aug; 404(1):158-62. PubMed ID: 12127080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the structure and mobility of Pseudomonas aeruginosa azurin by circular dichroism and dynamic fluorescence anisotropy.
    Mei G; Gilardi G; Venanzi M; Rosato N; Canters GW; Agró AF
    Protein Sci; 1996 Nov; 5(11):2248-54. PubMed ID: 8931143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site saturation of the histidine-46 position in Pseudomonas aeruginosa azurin: characterization of the His46Asp copper and cobalt proteins.
    Germanas JP; Di Bilio AJ; Gray HB; Richards JH
    Biochemistry; 1993 Aug; 32(30):7698-702. PubMed ID: 8394112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-directed mutagenesis of azurin from Pseudomonas aeruginosa enhances the formation of an electron-transfer complex with a copper-containing nitrite reductase from Alcaligenes faecalis S-6.
    Kukimoto M; Nishiyama M; Tanokura M; Murphy ME; Adman ET; Horinouchi S
    FEBS Lett; 1996 Sep; 394(1):87-90. PubMed ID: 8925934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.