These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30673270)

  • 1. Redistribution of Electron Equivalents between Magnetite and Aqueous Fe
    Peng H; Pearce CI; N'Diaye AT; Zhu Z; Ni J; Rosso KM; Liu J
    Environ Sci Technol; 2019 Feb; 53(4):1863-1873. PubMed ID: 30673270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)-goethite surface from AQDS speciation.
    Orsetti S; Laskov C; Haderlein SB
    Environ Sci Technol; 2013 Dec; 47(24):14161-8. PubMed ID: 24266388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AQDS and Redox-Active NOM Enables Microbial Fe(III)-Mineral Reduction at cm-Scales.
    Bai Y; Mellage A; Cirpka OA; Sun T; Angenent LT; Haderlein SB; Kappler A
    Environ Sci Technol; 2020 Apr; 54(7):4131-4139. PubMed ID: 32108470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Potentials of Magnetite Suspensions under Reducing Conditions.
    Robinson TC; Latta DE; Leddy J; Scherer MM
    Environ Sci Technol; 2022 Dec; 56(23):17454-17461. PubMed ID: 36394877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17.
    Li X; Liu L; Liu T; Yuan T; Zhang W; Li F; Zhou S; Li Y
    Chemosphere; 2013 Jun; 92(2):218-24. PubMed ID: 23461838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Fe(II)-induced generation of reactive oxygen species on magnetite surface for aqueous As(III) oxidation during oxygen activation.
    Meng F; Tong H; Feng C; Huang Z; Wu P; Zhou J; Hua J; Wu F; Liu C
    Water Res; 2024 Mar; 252():121232. PubMed ID: 38309068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous Vanadate Removal by Iron(II)-Bearing Phases under Anoxic Conditions.
    Vessey CJ; Lindsay MBJ
    Environ Sci Technol; 2020 Apr; 54(7):4006-4015. PubMed ID: 32142601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron Hopping Enables Rapid Electron Transfer between Quinone-/Hydroquinone-Containing Organic Molecules in Microbial Iron(III) Mineral Reduction.
    Bai Y; Sun T; Angenent LT; Haderlein SB; Kappler A
    Environ Sci Technol; 2020 Sep; 54(17):10646-10653. PubMed ID: 32867481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances.
    Zhou S; Xu J; Yang G; Zhuang L
    FEMS Microbiol Ecol; 2014 Apr; 88(1):107-20. PubMed ID: 24372096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of Hg(II) to Hg(0) by magnetite.
    Wiatrowski HA; Das S; Kukkadapu R; Ilton ES; Barkay T; Yee N
    Environ Sci Technol; 2009 Jul; 43(14):5307-13. PubMed ID: 19708358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoting nitrogen removal during Fe(III) reduction coupled to anaerobic ammonium oxidation (Feammox) by adding anthraquinone-2,6-disulfonate (AQDS).
    Yang Y; Peng H; Niu J; Zhao Z; Zhang Y
    Environ Pollut; 2019 Apr; 247():973-979. PubMed ID: 30823352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions.
    Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE
    Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Magnetite Stoichiometry on the Binding of Emerging Organic Contaminants.
    Cheng W; Marsac R; Hanna K
    Environ Sci Technol; 2018 Jan; 52(2):467-473. PubMed ID: 29215874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of biochar/AQDS on As(III)-adsorbed ferrihydrite reduction and arsenic (As) and iron (Fe) transformation: Abiotic and biological conditions.
    An W; Wu C; Xue S; Liu Z; Liu M; Li W
    Chemosphere; 2022 Mar; 291(Pt 3):133126. PubMed ID: 34861266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degeneration of biogenic superparamagnetic magnetite.
    Li YL; Pfiffner SM; Dyar MD; Vali H; Konhauser K; Cole DR; Rondinone AJ; Phelps TJ
    Geobiology; 2009 Jan; 7(1):25-34. PubMed ID: 19200144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anoxic oxidation of As(III) during Fe(II)-induced goethite recrystallization: Evidence and importance of Fe(IV) intermediate.
    Hua J; Fei YH; Feng C; Liu C; Liang S; Wang SL; Wu F
    J Hazard Mater; 2022 Jan; 421():126806. PubMed ID: 34388930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Role of Hematite in Anaerobic Digestion: Manipulating Membrane-Bound Electron Transport Chain by the Construction of Biological Capacitors with Humic Acid.
    Zhang P; Zhang T; Chen J; Zhang J; He Y
    Environ Sci Technol; 2023 Jul; 57(29):10828-10837. PubMed ID: 37427988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones.
    Bond DR; Lovley DR
    Environ Microbiol; 2002 Feb; 4(2):115-24. PubMed ID: 11972621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox equilibria of iron oxides in aqueous-based magnetite dispersions: effect of pH and redox potential.
    Pang SC; Chin SF; Anderson MA
    J Colloid Interface Sci; 2007 Jul; 311(1):94-101. PubMed ID: 17395194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation and retention of 99-Tc(IV) in magnetite under high pH conditions.
    Marshall TA; Morris K; Law GT; Mosselmans JF; Bots P; Parry SA; Shaw S
    Environ Sci Technol; 2014 Oct; 48(20):11853-62. PubMed ID: 25236360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.