BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 30673362)

  • 1. Cochlear compound action potentials from high-level tone bursts originate from wide cochlear regions that are offset toward the most sensitive cochlear region.
    Lee C; Guinan JJ; Rutherford MA; Kaf WA; Kennedy KM; Buchman CA; Salt AN; Lichtenhan JT
    J Neurophysiol; 2019 Mar; 121(3):1018-1033. PubMed ID: 30673362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Guinea Pig Model Suggests That Objective Assessment of Acoustic Hearing Preservation in Human Ears With Cochlear Implants Is Confounded by Shifts in the Spatial Origin of Acoustically Evoked Potential Measurements Along the Cochlear Length.
    Lee C; Hartsock JJ; Salt AN; Lichtenhan JT
    Ear Hear; 2024 May-Jun 01; 45(3):666-678. PubMed ID: 38178312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-synchrony cochlear compound action potentials evoked by rising frequency-swept tone bursts.
    Shore SE; Nuttall AL
    J Acoust Soc Am; 1985 Oct; 78(4):1286-95. PubMed ID: 3840500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustically Evoked Compound Action Potentials Recorded From Cochlear Implant Users With Preserved Acoustic Hearing.
    Kim JS; Brown CJ
    Ear Hear; 2023 Sep-Oct 01; 44(5):1061-1077. PubMed ID: 36882917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Band-Limited Chirp-Evoked Compound Action Potential in Guinea Pig: Comprehensive Neural Measure for Cochlear Implantation Monitoring.
    Adel Y; Tillein J; Petzold H; Weissgerber T; Baumann U
    Ear Hear; 2021; 42(1):142-162. PubMed ID: 32665481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Spatial Origins of Cochlear Amplification Assessed by Stimulus-Frequency Otoacoustic Emissions.
    Goodman SS; Lee C; Guinan JJ; Lichtenhan JT
    Biophys J; 2020 Mar; 118(5):1183-1195. PubMed ID: 31968228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical tuning and amplification within the apex of the guinea pig cochlea.
    Recio-Spinoso A; Oghalai JS
    J Physiol; 2017 Jul; 595(13):4549-4561. PubMed ID: 28382742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The auditory nerve overlapped waveform (ANOW) originates in the cochlear apex.
    Lichtenhan JT; Hartsock JJ; Gill RM; Guinan JJ; Salt AN
    J Assoc Res Otolaryngol; 2014 Jun; 15(3):395-411. PubMed ID: 24515339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle.
    Crawford AC; Fettiplace R
    J Physiol; 1980 Sep; 306():79-125. PubMed ID: 7463380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Offset tuning curves generated by simultaneous masking are more finely tuned than those generated by forward masking.
    Henry KR
    Hear Res; 1986; 24(2):151-61. PubMed ID: 3771377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origin of the 900 Hz spectral peak in spontaneous and sound-evoked round-window electrical activity.
    McMahon CM; Patuzzi RB
    Hear Res; 2002 Nov; 173(1-2):134-52. PubMed ID: 12372642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient focal cooling at the round window and cochlear nucleus shows round window CAP originates from cochlear neurones alone.
    McMahon CM; Brown DJ; Patuzzi RB
    Hear Res; 2004 Apr; 190(1-2):75-86. PubMed ID: 15051131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The temperature dependency of neural and hair cell responses evoked by high frequencies.
    Brown MC; Smith DI; Nuttall AL
    J Acoust Soc Am; 1983 May; 73(5):1662-70. PubMed ID: 6863743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of the acoustically evoked auditory-nerve response by electrical stimulation in the cochlea of the guinea pig.
    Stronks HC; Versnel H; Prijs VF; Klis SF
    Hear Res; 2010 Jan; 259(1-2):64-74. PubMed ID: 19840841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of a cochlear injury model using bone-conducted ultrasound irradiation in guinea pigs and investigation on peripheral coding and recognition of ultrasonic signals.
    Wang F; Cao C; Huang C; Li Q; Li T; Liu X; Zhang S; Ceng X; Wang C
    Cell Mol Biol (Noisy-le-grand); 2018 Sep; 64(12):2-10. PubMed ID: 30301494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory responses in the cochlear nucleus of awake mustached bats: precursors to spectral integration in the auditory midbrain.
    Marsh RA; Nataraj K; Gans D; Portfors CV; Wenstrup JJ
    J Neurophysiol; 2006 Jan; 95(1):88-105. PubMed ID: 16148270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Origin Along the Cochlea of Otoacoustic Emissions Evoked by Mid-Frequency Tone Pips.
    Goodman SS; Lefler SM; Lee C; Guinan JJ; Lichtenhan JT
    J Assoc Res Otolaryngol; 2024 Jun; ():. PubMed ID: 38937327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea.
    LePage EL
    J Acoust Soc Am; 1987 Jul; 82(1):139-54. PubMed ID: 3624635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Putative Auditory-Evoked Neurophonic Measurements Using a Novel Signal Processing Technique: A Pilot Case Study.
    Cook AM; Allsop AJ; O'Beirne GA
    Front Neurosci; 2017; 11():472. PubMed ID: 28970782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of prednisolone and non-steroidal anti-inflammatory agents on the normal and noise-damaged guinea pig inner ear.
    Lamm K; Arnold W
    Hear Res; 1998 Jan; 115(1-2):149-61. PubMed ID: 9472744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.