These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 30673464)
1. Development of Resistance to Hymexazol Among Pythium Species in Cucumber Greenhouses in Oman. Al-Balushi ZM; Agrama H; Al-Mahmooli IH; Maharachchikumbura SSN; Al-Sadi AM Plant Dis; 2018 Jan; 102(1):202-208. PubMed ID: 30673464 [TBL] [Abstract][Full Text] [Related]
2. Pythium and Globisporangium species associated with cucumber rhizosphere causing damping-off and their effects on cucumber seed decay in Oman. Al-Mahmooli IH; Finckh MR; Velazhahan R; AlJabri AM; Šišić A; Hussain S; Abdel-Jalil R; Al-Sadi AM Arch Microbiol; 2024 Aug; 206(9):374. PubMed ID: 39127775 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Toporek SM; Keinath AP Plant Dis; 2020 Nov; 104(11):2832-2842. PubMed ID: 32946348 [TBL] [Abstract][Full Text] [Related]
4. Fitness Attributes of Pythium aphanidermatum with Dual Resistance to Mefenoxam and Fenamidone. Lookabaugh EC; Kerns JP; Cubeta MA; Shew BB Plant Dis; 2018 Oct; 102(10):1938-1943. PubMed ID: 30265220 [TBL] [Abstract][Full Text] [Related]
5. Evaluating Fungicide Selections to Manage Pythium Root Rot on Poinsettia Cultivars with Varying Levels of Partial Resistance. Lookabaugh EC; Kerns JP; Shew BB Plant Dis; 2021 Jun; 105(6):1640-1647. PubMed ID: 33320042 [No Abstract] [Full Text] [Related]
6. Differential Suppression of Damping-off Caused by Pythium aphanidermatum, P. irregulare, and P. myriotylum in Composts at Different Temperatures. Ben-Yephet Y; Nelson EB Plant Dis; 1999 Apr; 83(4):356-360. PubMed ID: 30845587 [TBL] [Abstract][Full Text] [Related]
7. Mefenoxam Sensitivity, Aggressiveness, and Identification of Pythium Species Causing Root Rot on Floriculture Crops in North Carolina. Lookabaugh EC; Ivors KL; Shew BB Plant Dis; 2015 Nov; 99(11):1550-1558. PubMed ID: 30695958 [TBL] [Abstract][Full Text] [Related]
8. Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. El-Tarabily KA; Nassar AH; Hardy GE; Sivasithamparam K J Appl Microbiol; 2009 Jan; 106(1):13-26. PubMed ID: 19120624 [TBL] [Abstract][Full Text] [Related]
9. Inability to find consistent bacterial biocontrol agents of Pythium aphanidermatum in cucumber using screens based on ecophysiological traits. Folman LB; Postma J; van Veen JA Microb Ecol; 2003 Jan; 45(1):72-87. PubMed ID: 12469246 [TBL] [Abstract][Full Text] [Related]
10. Identification and Characterization of Pythium Species Associated with Greenhouse Floral Crops in Pennsylvania. Moorman GW; Kang S; Geiser DM; Kim SH Plant Dis; 2002 Nov; 86(11):1227-1231. PubMed ID: 30818472 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Foliar Web Blight of Spinach, Caused by Pythium aphanidermatum, in the Desert Southwest of the United States. Liu B; Feng C; Matheron ME; Correll JC Plant Dis; 2018 Mar; 102(3):608-612. PubMed ID: 30673473 [TBL] [Abstract][Full Text] [Related]
12. Insights into the molecular mechanism of tolerance to carboxylic acid amide (CAA) fungicides in Pythium aphanidermatum. Blum M; Gisi U Pest Manag Sci; 2012 Aug; 68(8):1171-83. PubMed ID: 22431165 [TBL] [Abstract][Full Text] [Related]
13. Genetic structure and distribution of pythium aphanidermatum populations in Pennsylvania greenhouses based on analysis of AFLP and SSR markers. Lee S; Garzón CD; Moorman GW Mycologia; 2010; 102(4):774-84. PubMed ID: 20648746 [TBL] [Abstract][Full Text] [Related]
14. Talaromyces variabilis interferes with Pythium aphanidermatum growth and suppresses Pythium-induced damping-off of cucumbers and tomatoes. Halo BA; Al-Yahyai RA; Maharachchikumbura SSN; Al-Sadi AM Sci Rep; 2019 Aug; 9(1):11255. PubMed ID: 31375723 [TBL] [Abstract][Full Text] [Related]
15. Ecology of hymexazol-insensitive Pythium species in field soils. Ali-Shtayeh M; Salah AM; Jamous RM Mycopathologia; 2003; 156(4):333-42. PubMed ID: 14682460 [TBL] [Abstract][Full Text] [Related]
16. Differentiation of Pythium spp. from vegetable crops with molecular markers and sensitivity to azoxystrobin and mefenoxam. Matić S; Gilardi G; Gisi U; Gullino ML; Garibaldi A Pest Manag Sci; 2019 Feb; 75(2):356-365. PubMed ID: 29888848 [TBL] [Abstract][Full Text] [Related]
17. Combined Infection with Cucumber green mottle mosaic virus and Pythium Species Causes Extensive Collapse in Cucumber Plants. Philosoph AM; Dombrovsky A; Elad Y; Jaiswal AK; Koren A; Lachman O; Frenkel O Plant Dis; 2018 Apr; 102(4):753-759. PubMed ID: 30673404 [TBL] [Abstract][Full Text] [Related]
18. Population dynamics of Pythium aphanidermatum in cucumber grown in closed systems. Postma J; Bonants PJ; Van Os EA Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):47-59. PubMed ID: 12425020 [TBL] [Abstract][Full Text] [Related]
19. Detection and fitness comparison of target-based highly fludioxonil-resistant isolates of Botrytis cinerea from strawberry and cucumber in China. Sang C; Ren W; Wang J; Xu H; Zhang Z; Zhou M; Chen C; Wang K Pestic Biochem Physiol; 2018 May; 147():110-118. PubMed ID: 29933980 [TBL] [Abstract][Full Text] [Related]
20. Analysis of Diversity in Pythium aphanidermatum Populations from a Single Greenhouse Reveals Phenotypic and Genotypic Changes over 2006 to 2011. Al-Sadi AM; Al-Ghaithi AG; Al-Balushi ZM; Al-Jabri AH Plant Dis; 2012 Jun; 96(6):852-858. PubMed ID: 30727347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]