These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS. Ratnesh RK; Mehata MS Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():201-210. PubMed ID: 28242450 [TBL] [Abstract][Full Text] [Related]
9. Photoenhancement of lifetimes in CdSe/ZnS and CdTe quantum dot-dopamine conjugates. Cooper DR; Suffern D; Carlini L; Clarke SJ; Parbhoo R; Bradforth SE; Nadeau JL Phys Chem Chem Phys; 2009 Jun; 11(21):4298-310. PubMed ID: 19458832 [TBL] [Abstract][Full Text] [Related]
10. Model-Free Estimation of Energy-Transfer Timescales in a Closely Emitting CdSe/ZnS Quantum Dot and Rhodamine 6G FRET Couple. Bharadwaj K; Koley S; Jana S; Ghosh S Chem Asian J; 2018 Nov; 13(21):3296-3303. PubMed ID: 30178522 [TBL] [Abstract][Full Text] [Related]
11. Quantum dots acting as energy acceptors with organic dyes as donors in solution. Xu H; Huang X; Zhang W; Chen G; Zhu W; Zhong X Chemphyschem; 2010 Oct; 11(14):3167-71. PubMed ID: 20872922 [TBL] [Abstract][Full Text] [Related]
12. A High-Quality CdSe/CdS/ZnS Quantum-Dot-Based FRET Aptasensor for the Simultaneous Detection of Two Different Alzheimer's Disease Core Biomarkers. Lu X; Hou X; Tang H; Yi X; Wang J Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432316 [TBL] [Abstract][Full Text] [Related]
13. Microwave-assisted synthesis of highly luminescent AgInS Xiong WW; Yang GH; Wu XC; Zhu JJ J Mater Chem B; 2013 Sep; 1(33):4160-4165. PubMed ID: 32260969 [TBL] [Abstract][Full Text] [Related]
14. Photophysical properties gallium octacarboxy phthalocyanines conjugated to CdSe@ZnS quantum dots. Tshangana C; Nyokong T Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():397-404. PubMed ID: 26143333 [TBL] [Abstract][Full Text] [Related]
15. Steady State and Time Resolved Spectroscopic Study of CdSe and CdSe/ZnS QDs:FRET Approach. Kotresh MG; Adarsh KS; Shivkumar MA; Inamdar SR J Fluoresc; 2016 Jul; 26(4):1249-59. PubMed ID: 27155863 [TBL] [Abstract][Full Text] [Related]
16. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. Lee KH; Lee JH; Kang HD; Park B; Kwon Y; Ko H; Lee C; Lee J; Yang H ACS Nano; 2014 May; 8(5):4893-901. PubMed ID: 24758609 [TBL] [Abstract][Full Text] [Related]
17. Quantum dot photoluminescence quenching by Cr(III) complexes. Photosensitized reactions and evidence for a FRET mechanism. Burks PT; Ostrowski AD; Mikhailovsky AA; Chan EM; Wagenknecht PS; Ford PC J Am Chem Soc; 2012 Aug; 134(32):13266-75. PubMed ID: 22808899 [TBL] [Abstract][Full Text] [Related]
18. Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitivity of time-resolved FRET bioassays. Wegner KD; Lanh PT; Jennings T; Oh E; Jain V; Fairclough SM; Smith JM; Giovanelli E; Lequeux N; Pons T; Hildebrandt N ACS Appl Mater Interfaces; 2013 Apr; 5(8):2881-92. PubMed ID: 23496235 [TBL] [Abstract][Full Text] [Related]
19. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube. Biju V; Itoh T; Baba Y; Ishikawa M J Phys Chem B; 2006 Dec; 110(51):26068-74. PubMed ID: 17181259 [TBL] [Abstract][Full Text] [Related]
20. Concurrent Modulation of Quantum Dot Photoluminescence Using a Combination of Charge Transfer and Förster Resonance Energy Transfer: Competitive Quenching and Multiplexed Biosensing Modality. Algar WR; Khachatrian A; Melinger JS; Huston AL; Stewart MH; Susumu K; Blanco-Canosa JB; Oh E; Dawson PE; Medintz IL J Am Chem Soc; 2017 Jan; 139(1):363-372. PubMed ID: 28009161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]