These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 30673771)
1. Cholesterol re-organisation and lipid de-packing by arginine-rich cell penetrating peptides: Role in membrane translocation. Almeida C; Maniti O; Di Pisa M; Swiecicki JM; Ayala-Sanmartin J PLoS One; 2019; 14(1):e0210985. PubMed ID: 30673771 [TBL] [Abstract][Full Text] [Related]
2. Effects of pyrenebutyrate on the translocation of arginine-rich cell-penetrating peptides through artificial membranes: recruiting peptides to the membranes, dissipating liquid-ordered phases, and inducing curvature. Katayama S; Nakase I; Yano Y; Murayama T; Nakata Y; Matsuzaki K; Futaki S Biochim Biophys Acta; 2013 Sep; 1828(9):2134-42. PubMed ID: 23711826 [TBL] [Abstract][Full Text] [Related]
3. Membrane interactions of two arginine-rich peptides with different cell internalization capacities. Walrant A; Vogel A; Correia I; Lequin O; Olausson BE; Desbat B; Sagan S; Alves ID Biochim Biophys Acta; 2012 Jul; 1818(7):1755-63. PubMed ID: 22402267 [TBL] [Abstract][Full Text] [Related]
4. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles. Sharmin S; Islam MZ; Karal MA; Alam Shibly SU; Dohra H; Yamazaki M Biochemistry; 2016 Aug; 55(30):4154-65. PubMed ID: 27420912 [TBL] [Abstract][Full Text] [Related]
6. Penetration without cells: membrane translocation of cell-penetrating peptides in the model giant plasma membrane vesicles. Säälik P; Niinep A; Pae J; Hansen M; Lubenets D; Langel Ü; Pooga M J Control Release; 2011 Jul; 153(2):117-25. PubMed ID: 21420454 [TBL] [Abstract][Full Text] [Related]
7. Different membrane behaviour and cellular uptake of three basic arginine-rich peptides. Walrant A; Correia I; Jiao CY; Lequin O; Bent EH; Goasdoué N; Lacombe C; Chassaing G; Sagan S; Alves ID Biochim Biophys Acta; 2011 Jan; 1808(1):382-93. PubMed ID: 20920465 [TBL] [Abstract][Full Text] [Related]
8. Arginine-Rich Cell-Penetrating Peptides Induce Lipid Rearrangements for Their Active Translocation across Laterally Heterogeneous Membranes. Park S; Kim J; Oh SS; Choi SQ Adv Sci (Weinh); 2024 Aug; 11(32):e2404563. PubMed ID: 38932459 [TBL] [Abstract][Full Text] [Related]
9. Arginine-Rich Cell-Penetrating Peptides Require Nucleolin and Cholesterol-Poor Subdomains for Translocation across Membranes. Lorents A; Säälik P; Langel Ü; Pooga M Bioconjug Chem; 2018 Apr; 29(4):1168-1177. PubMed ID: 29510042 [TBL] [Abstract][Full Text] [Related]
10. Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations. Witte K; Olausson BE; Walrant A; Alves ID; Vogel A Biochim Biophys Acta; 2013 Feb; 1828(2):824-33. PubMed ID: 23174351 [TBL] [Abstract][Full Text] [Related]
11. Translocation of cell-penetrating peptides across the plasma membrane is controlled by cholesterol and microenvironment created by membranous proteins. Pae J; Säälik P; Liivamägi L; Lubenets D; Arukuusk P; Langel Ü; Pooga M J Control Release; 2014 Oct; 192():103-13. PubMed ID: 25016968 [TBL] [Abstract][Full Text] [Related]
12. Fluorescent Leakage Assay to Investigate Membrane Destabilization by Cell-Penetrating Peptide. Konate K; Seisel Q; Vivès E; Boisguérin P; Deshayes S J Vis Exp; 2020 Dec; (166):. PubMed ID: 33393518 [TBL] [Abstract][Full Text] [Related]
13. Accumulation of cell-penetrating peptides in large unilamellar vesicles: A straightforward screening assay for investigating the internalization mechanism. Swiecicki JM; Di Pisa M; Burlina F; Lécorché P; Mansuy C; Chassaing G; Lavielle S Biopolymers; 2015 Sep; 104(5):533-43. PubMed ID: 25846422 [TBL] [Abstract][Full Text] [Related]
14. Glycosaminoglycans are required for translocation of amphipathic cell-penetrating peptides across membranes. Pae J; Liivamägi L; Lubenets D; Arukuusk P; Langel Ü; Pooga M Biochim Biophys Acta; 2016 Aug; 1858(8):1860-7. PubMed ID: 27117133 [TBL] [Abstract][Full Text] [Related]
15. Development of lipid membrane based assays to accurately predict the transfection efficiency of cell-penetrating peptide-based gene nanoparticles. Alhakamy NA; Alaofi AL; Ahmed OAA; Fahmy UA; Md S; Abdulaal WH; Alfaleh MA; Chakraborty A; Berkland CJ; Dhar P Int J Pharm; 2020 Apr; 580():119221. PubMed ID: 32165227 [TBL] [Abstract][Full Text] [Related]
17. Introduction of constrained Trp analogs in RW9 modulates structure and partition in membrane models. Lozada C; Gonzalez S; Agniel R; Hindie M; Manciocchi L; Mazzanti L; Ha-Duong T; Santoro F; Carotenuto A; Ballet S; Lubin-Germain N Bioorg Chem; 2023 Oct; 139():106731. PubMed ID: 37480815 [TBL] [Abstract][Full Text] [Related]
18. Translocation of 5' mRNA cap analogue--peptide conjugates across the membranes of giant unilamellar vesicles. Worch R; Piecyk K; Kolasa AB; Jankowska-Anyszka M Biochim Biophys Acta; 2016 Feb; 1858(2):311-7. PubMed ID: 26654783 [TBL] [Abstract][Full Text] [Related]
19. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669 [TBL] [Abstract][Full Text] [Related]
20. A novel amphipathic cell-penetrating peptide based on the N-terminal glycosaminoglycan binding region of human apolipoprotein E. Ohgita T; Takechi-Haraya Y; Nadai R; Kotani M; Tamura Y; Nishikiori K; Nishitsuji K; Uchimura K; Hasegawa K; Sakai-Kato K; Akaji K; Saito H Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):541-549. PubMed ID: 30562499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]