BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 30674064)

  • 1. Conductive electrospun scaffolds with electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells.
    Rahmani A; Nadri S; Kazemi HS; Mortazavi Y; Sojoodi M
    Artif Organs; 2019 Aug; 43(8):780-790. PubMed ID: 30674064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potency of hsa-miR-9-1 overexpression in photoreceptor differentiation of conjunctiva mesenchymal stem cells on a 3D nanofibrous scaffold.
    Rahmani A; Naderi M; Barati G; Arefian E; Jedari B; Nadri S
    Biochem Biophys Res Commun; 2020 Aug; 529(3):526-532. PubMed ID: 32736669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The optimal electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells.
    Esmaeili Abdar Z; Jafari R; Mohammadi P; Nadri S
    Int J Artif Organs; 2022 Aug; 45(8):695-703. PubMed ID: 35773946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro differentiation of conjunctiva mesenchymal stem cells into insulin producing cells on natural and synthetic electrospun scaffolds.
    Barati G; Rahmani A; Nadri S
    Biologicals; 2019 Nov; 62():33-38. PubMed ID: 31635936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic effect of miR-9 overexpression and electrical induction on differentiation of conjunctiva mesenchymal stem cells into photoreceptor-like cells.
    Naderi M; Nadri S
    Int J Artif Organs; 2022 Jul; 45(7):623-630. PubMed ID: 35658561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurogenic differentiation of human conjunctiva mesenchymal stem cells on a nanofibrous scaffold.
    Soleimani M; Nadri S; Shabani I
    Int J Dev Biol; 2010; 54(8-9):1295-300. PubMed ID: 20857376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High yield of cells committed to the photoreceptor-like cells from conjunctiva mesenchymal stem cells on nanofibrous scaffolds.
    Nadri S; Kazemi B; Eslaminejad MB; Yazdani S; Soleimani M
    Mol Biol Rep; 2013 Jun; 40(6):3883-90. PubMed ID: 23588957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of conjunctiva mesenchymal stem cells into secreting islet beta cells on plasma treated electrospun nanofibrous scaffold.
    Nadri S; Barati G; Mostafavi H; Esmaeilzadeh A; Enderami SE
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):178-187. PubMed ID: 29241367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing neural differentiation of induced pluripotent stem cells by conductive graphene/silk fibroin films.
    Niu Y; Chen X; Yao D; Peng G; Liu H; Fan Y
    J Biomed Mater Res A; 2018 Nov; 106(11):2973-2983. PubMed ID: 30260553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and fabrication of novel quinone-based chromenopyrazole antioxidant-laden silk fibroin nanofibers scaffold for tissue engineering applications.
    Kandhasamy S; Arthi N; Arun RP; Verma RS
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():773-787. PubMed ID: 31147050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical stimulation of somatic human stem cells mediated by composite containing conductive nanofibers for ligament regeneration.
    Dodel M; Hemmati Nejad N; Bahrami SH; Soleimani M; Mohammadi Amirabad L; Hanaee-Ahvaz H; Atashi A
    Biologicals; 2017 Mar; 46():99-107. PubMed ID: 28189483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conjunctiva derived mesenchymal stem cell (CJMSCs) as a potential platform for differentiation into corneal epithelial cells on bioengineered electrospun scaffolds.
    Soleimanifar F; Mortazavi Y; Nadri S; Soleimani M
    J Biomed Mater Res A; 2017 Oct; 105(10):2703-2711. PubMed ID: 28556557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-shell fibrous scaffold as a vehicle for sustained release of retinal pigmented epithelium-derived factor (PEDF) for photoreceptor differentiation of conjunctiva mesenchymal stem cells.
    Nasehi F; Karshenas M; Nadri S; Barati G; Salim A
    J Biomed Mater Res A; 2017 Dec; 105(12):3514-3519. PubMed ID: 28795779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofibrous silk fibroin/reduced graphene oxide scaffolds for tissue engineering and cell culture applications.
    Nalvuran H; Elçin AE; Elçin YM
    Int J Biol Macromol; 2018 Jul; 114():77-84. PubMed ID: 29551508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chondrogenic differentiation of Wharton's Jelly mesenchymal stem cells on silk spidroin-fibroin mix scaffold supplemented with L-ascorbic acid and platelet rich plasma.
    Barlian A; Judawisastra H; Ridwan A; Wahyuni AR; Lingga ME
    Sci Rep; 2020 Nov; 10(1):19449. PubMed ID: 33173146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application.
    Singh BN; Panda NN; Mund R; Pramanik K
    Carbohydr Polym; 2016 Oct; 151():335-347. PubMed ID: 27474575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melanin incorporated electroactive and antioxidant silk fibroin nanofibrous scaffolds for nerve tissue engineering.
    Nune M; Manchineella S; T G; K S N
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():17-25. PubMed ID: 30423699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun biomimic nanofibrous scaffolds of silk fibroin/hyaluronic acid for tissue engineering.
    Zhang K; Fan L; Yan Z; Yu Q; Mo X
    J Biomater Sci Polym Ed; 2012; 23(9):1185-98. PubMed ID: 21722417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of electrospun rGO-poly(ester amide) conductive scaffolds.
    Stone H; Lin S; Mequanint K
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():324-332. PubMed ID: 30813034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.