BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30674122)

  • 1. Modeling of pH regulation in tumor cells: Direct interaction between proton-coupled lactate transporters and cancer-associated carbonic anhydrase.
    Hiremath SA; Surulescu C; Jamali S; Ames S; Deitmer JW; Becker HM
    Math Biosci Eng; 2018 Dec; 16(1):320-337. PubMed ID: 30674122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytically inactive carbonic anhydrase-related proteins enhance transport of lactate by MCT1.
    Aspatwar A; Tolvanen MEE; Schneider HP; Becker HM; Narkilahti S; Parkkila S; Deitmer JW
    FEBS Open Bio; 2019 Jul; 9(7):1204-1211. PubMed ID: 31033227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-catalytic function of carbonic anhydrase IX contributes to the glycolytic phenotype and pH regulation in human breast cancer cells.
    Mboge MY; Chen Z; Khokhar D; Wolff A; Ai L; Heldermon CD; Bozdag M; Carta F; Supuran CT; Brown KD; McKenna R; Frost CJ; Frost SC
    Biochem J; 2019 May; 476(10):1497-1513. PubMed ID: 31072911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters.
    Klier M; Andes FT; Deitmer JW; Becker HM
    J Biol Chem; 2014 Jan; 289(5):2765-75. PubMed ID: 24338019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A surface proton antenna in carbonic anhydrase II supports lactate transport in cancer cells.
    Noor SI; Jamali S; Ames S; Langer S; Deitmer JW; Becker HM
    Elife; 2018 May; 7():. PubMed ID: 29809145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional interaction between bicarbonate transporters and carbonic anhydrase modulates lactate uptake into mouse cardiomyocytes.
    Peetz J; Barros LF; San Martín A; Becker HM
    Pflugers Arch; 2015 Jul; 467(7):1469-1480. PubMed ID: 25118990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function.
    Jamali S; Klier M; Ames S; Barros LF; McKenna R; Deitmer JW; Becker HM
    Sci Rep; 2015 Sep; 5():13605. PubMed ID: 26337752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CAIX forms a transport metabolon with monocarboxylate transporters in human breast cancer cells.
    Ames S; Andring JT; McKenna R; Becker HM
    Oncogene; 2020 Feb; 39(8):1710-1723. PubMed ID: 31723238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans.
    Messonnier L; Kristensen M; Juel C; Denis C
    J Appl Physiol (1985); 2007 May; 102(5):1936-44. PubMed ID: 17289910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonenzymatic proton handling by carbonic anhydrase II during H+-lactate cotransport via monocarboxylate transporter 1.
    Becker HM; Deitmer JW
    J Biol Chem; 2008 Aug; 283(31):21655-67. PubMed ID: 18539591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton Transport in Cancer Cells: The Role of Carbonic Anhydrases.
    Becker HM; Deitmer JW
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33804674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disrupting proton dynamics and energy metabolism for cancer therapy.
    Parks SK; Chiche J; Pouysségur J
    Nat Rev Cancer; 2013 Sep; 13(9):611-23. PubMed ID: 23969692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton channels and exchangers in cancer.
    Spugnini EP; Sonveaux P; Stock C; Perez-Sayans M; De Milito A; Avnet S; Garcìa AG; Harguindey S; Fais S
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt B):2715-26. PubMed ID: 25449995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na(+)/H(+) antiporter (NHE1) and lactate/H(+) symporters (MCTs) in pH homeostasis and cancer metabolism.
    Counillon L; Bouret Y; Marchiq I; Pouysségur J
    Biochim Biophys Acta; 2016 Oct; 1863(10):2465-80. PubMed ID: 26944480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular carbonic anhydrase activity facilitates lactic acid transport in rat skeletal muscle fibres.
    Wetzel P; Hasse A; Papadopoulos S; Voipio J; Kaila K; Gros G
    J Physiol; 2001 Mar; 531(Pt 3):743-56. PubMed ID: 11251055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The proteoglycan-like domain of carbonic anhydrase IX mediates non-catalytic facilitation of lactate transport in cancer cells.
    Ames S; Pastorekova S; Becker HM
    Oncotarget; 2018 Jun; 9(46):27940-27957. PubMed ID: 29963253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of a 'proton antenna' facilitates transport activity of the monocarboxylate transporter MCT4.
    Noor SI; Pouyssegur J; Deitmer JW; Becker HM
    FEBS J; 2017 Jan; 284(1):149-162. PubMed ID: 27860283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic analysis and design of experiments to identify the catalytic mechanism of the monocarboxylate transporter isoforms 4 and 1.
    Vinnakota KC; Beard DA
    Biophys J; 2011 Jan; 100(2):369-80. PubMed ID: 21244833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Value of pH regulators in the diagnosis, prognosis and treatment of cancer.
    Granja S; Tavares-Valente D; Queirós O; Baltazar F
    Semin Cancer Biol; 2017 Apr; 43():17-34. PubMed ID: 28065864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current aspects of lactate exchange: lactate/H+ transport in human skeletal muscle.
    Juel C
    Eur J Appl Physiol; 2001 Nov; 86(1):12-6. PubMed ID: 11820315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.