These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
658 related articles for article (PubMed ID: 30674442)
1. Dermoscopy diagnosis of cancerous lesions utilizing dual deep learning algorithms via visual and audio (sonification) outputs: Laboratory and prospective observational studies. Walker BN; Rehg JM; Kalra A; Winters RM; Drews P; Dascalu J; David EO; Dascalu A EBioMedicine; 2019 Feb; 40():176-183. PubMed ID: 30674442 [TBL] [Abstract][Full Text] [Related]
2. Skin cancer detection by deep learning and sound analysis algorithms: A prospective clinical study of an elementary dermoscope. Dascalu A; David EO EBioMedicine; 2019 May; 43():107-113. PubMed ID: 31101596 [TBL] [Abstract][Full Text] [Related]
3. Non-melanoma skin cancer diagnosis: a comparison between dermoscopic and smartphone images by unified visual and sonification deep learning algorithms. Dascalu A; Walker BN; Oron Y; David EO J Cancer Res Clin Oncol; 2022 Sep; 148(9):2497-2505. PubMed ID: 34546412 [TBL] [Abstract][Full Text] [Related]
4. Superior skin cancer classification by the combination of human and artificial intelligence. Hekler A; Utikal JS; Enk AH; Hauschild A; Weichenthal M; Maron RC; Berking C; Haferkamp S; Klode J; Schadendorf D; Schilling B; Holland-Letz T; Izar B; von Kalle C; Fröhling S; Brinker TJ; Eur J Cancer; 2019 Oct; 120():114-121. PubMed ID: 31518967 [TBL] [Abstract][Full Text] [Related]
5. Past and present of computer-assisted dermoscopic diagnosis: performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions. Sies K; Winkler JK; Fink C; Bardehle F; Toberer F; Buhl T; Enk A; Blum A; Rosenberger A; Haenssle HA Eur J Cancer; 2020 Aug; 135():39-46. PubMed ID: 32534243 [TBL] [Abstract][Full Text] [Related]
6. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Haenssle HA; Fink C; Schneiderbauer R; Toberer F; Buhl T; Blum A; Kalloo A; Hassen ABH; Thomas L; Enk A; Uhlmann L; ; Alt C; Arenbergerova M; Bakos R; Baltzer A; Bertlich I; Blum A; Bokor-Billmann T; Bowling J; Braghiroli N; Braun R; Buder-Bakhaya K; Buhl T; Cabo H; Cabrijan L; Cevic N; Classen A; Deltgen D; Fink C; Georgieva I; Hakim-Meibodi LE; Hanner S; Hartmann F; Hartmann J; Haus G; Hoxha E; Karls R; Koga H; Kreusch J; Lallas A; Majenka P; Marghoob A; Massone C; Mekokishvili L; Mestel D; Meyer V; Neuberger A; Nielsen K; Oliviero M; Pampena R; Paoli J; Pawlik E; Rao B; Rendon A; Russo T; Sadek A; Samhaber K; Schneiderbauer R; Schweizer A; Toberer F; Trennheuser L; Vlahova L; Wald A; Winkler J; Wölbing P; Zalaudek I Ann Oncol; 2018 Aug; 29(8):1836-1842. PubMed ID: 29846502 [TBL] [Abstract][Full Text] [Related]
7. Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017. Marchetti MA; Liopyris K; Dusza SW; Codella NCF; Gutman DA; Helba B; Kalloo A; Halpern AC; J Am Acad Dermatol; 2020 Mar; 82(3):622-627. PubMed ID: 31306724 [TBL] [Abstract][Full Text] [Related]
8. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms. Premaladha J; Ravichandran KS J Med Syst; 2016 Apr; 40(4):96. PubMed ID: 26872778 [TBL] [Abstract][Full Text] [Related]
9. Improving Diagnostic Accuracy of Dermoscopically Equivocal Pink Cutaneous Lesions with Reflectance Confocal Microscopy in Telemedicine Settings: Double Reader Concordance Evaluation of 316 Cases. Łudzik J; Witkowski AM; Roterman-Konieczna I; Bassoli S; Farnetani F; Pellacani G PLoS One; 2016; 11(9):e0162495. PubMed ID: 27606812 [TBL] [Abstract][Full Text] [Related]
10. [The Rise of Artificial Intelligence - High Prediction Accuracy in Early Detection of Pigmented Melanoma]. Jutzi T; Krieghoff-Henning EI; Brinker TJ Laryngorhinootologie; 2023 Jul; 102(7):496-503. PubMed ID: 36580975 [TBL] [Abstract][Full Text] [Related]
11. Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms. Alsaade FW; Aldhyani THH; Al-Adhaileh MH Comput Math Methods Med; 2021; 2021():9998379. PubMed ID: 34055044 [TBL] [Abstract][Full Text] [Related]
12. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. Marchetti MA; Codella NCF; Dusza SW; Gutman DA; Helba B; Kalloo A; Mishra N; Carrera C; Celebi ME; DeFazio JL; Jaimes N; Marghoob AA; Quigley E; Scope A; Yélamos O; Halpern AC; J Am Acad Dermatol; 2018 Feb; 78(2):270-277.e1. PubMed ID: 28969863 [TBL] [Abstract][Full Text] [Related]
13. A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi. Tognetti L; Bonechi S; Andreini P; Bianchini M; Scarselli F; Cevenini G; Moscarella E; Farnetani F; Longo C; Lallas A; Carrera C; Puig S; Tiodorovic D; Perrot JL; Pellacani G; Argenziano G; Cinotti E; Cataldo G; Balistreri A; Mecocci A; Gori M; Rubegni P; Cartocci A J Dermatol Sci; 2021 Feb; 101(2):115-122. PubMed ID: 33358096 [TBL] [Abstract][Full Text] [Related]
14. Prediction of melanoma evolution in melanocytic nevi via artificial intelligence: A call for prospective data. Sondermann W; Utikal JS; Enk AH; Schadendorf D; Klode J; Hauschild A; Weichenthal M; French LE; Berking C; Schilling B; Haferkamp S; Fröhling S; von Kalle C; Brinker TJ Eur J Cancer; 2019 Sep; 119():30-34. PubMed ID: 31401471 [TBL] [Abstract][Full Text] [Related]
15. Deep learning-level melanoma detection by interpretable machine learning and imaging biomarker cues. Gareau DS; Browning J; Correa Da Rosa J; Suarez-Farinas M; Lish S; Zong AM; Firester B; Vrattos C; Renert-Yuval Y; Gamboa M; Vallone MG; Barragán-Estudillo ZF; Tamez-Peña AL; Montoya J; Jesús-Silva MA; Carrera C; Malvehy J; Puig S; Marghoob A; Carucci JA; Krueger JG J Biomed Opt; 2020 Nov; 25(11):. PubMed ID: 33247560 [TBL] [Abstract][Full Text] [Related]
16. Assessment of Accuracy of an Artificial Intelligence Algorithm to Detect Melanoma in Images of Skin Lesions. Phillips M; Marsden H; Jaffe W; Matin RN; Wali GN; Greenhalgh J; McGrath E; James R; Ladoyanni E; Bewley A; Argenziano G; Palamaras I JAMA Netw Open; 2019 Oct; 2(10):e1913436. PubMed ID: 31617929 [TBL] [Abstract][Full Text] [Related]
17. Skin Cancer Detection in Diverse Skin Tones by Machine Learning Combining Audio and Visual Convolutional Neural Networks. Walker BN; Blalock TW; Leibowitz R; Oron Y; Dascalu D; David EO; Dascalu A Oncology; 2024 Sep; ():1-8. PubMed ID: 39312888 [TBL] [Abstract][Full Text] [Related]
18. Deep Learning Based Skin Lesion Segmentation and Classification of Melanoma Using Support Vector Machine (SVM). R D S; A S Asian Pac J Cancer Prev; 2019 May; 20(5):1555-1561. PubMed ID: 31128062 [TBL] [Abstract][Full Text] [Related]
19. Computational neural network in melanocytic lesions diagnosis: artificial intelligence to improve diagnosis in dermatology? Aractingi S; Pellacani G Eur J Dermatol; 2019 Apr; 29(S1):4-7. PubMed ID: 31017580 [TBL] [Abstract][Full Text] [Related]
20. Validity and Reliability of Dermoscopic Criteria Used to Differentiate Nevi From Melanoma: A Web-Based International Dermoscopy Society Study. Carrera C; Marchetti MA; Dusza SW; Argenziano G; Braun RP; Halpern AC; Jaimes N; Kittler HJ; Malvehy J; Menzies SW; Pellacani G; Puig S; Rabinovitz HS; Scope A; Soyer HP; Stolz W; Hofmann-Wellenhof R; Zalaudek I; Marghoob AA JAMA Dermatol; 2016 Jul; 152(7):798-806. PubMed ID: 27074267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]