BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30674557)

  • 21. Generation of Genetic Knockouts in Myeloid Cell Lines Using a Lentiviral CRISPR/Cas9 System.
    Baker PJ; Masters SL
    Methods Mol Biol; 2018; 1714():41-55. PubMed ID: 29177854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish.
    Prykhozhij SV; Caceres L; Berman JN
    Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ENCoRE: an efficient software for CRISPR screens identifies new players in extrinsic apoptosis.
    Trümbach D; Pfeiffer S; Poppe M; Scherb H; Doll S; Wurst W; Schick JA
    BMC Genomics; 2017 Nov; 18(1):905. PubMed ID: 29178829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fusion of SpCas9 to E. coli Rec A protein enhances CRISPR-Cas9 mediated gene knockout in mammalian cells.
    Lin L; Petersen TS; Jensen KT; Bolund L; Kühn R; Luo Y
    J Biotechnol; 2017 Apr; 247():42-49. PubMed ID: 28259533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scalable CRISPR-Cas9 chemical genetic screens in non-transformed human cells.
    Lin K; Chang YC; Marron Fernandez de Velasco E; Wickman K; Myers CL; Bielinsky AK
    STAR Protoc; 2022 Dec; 3(4):101675. PubMed ID: 36107744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient Production and Identification of CRISPR/Cas9-generated Gene Knockouts in the Model System Danio rerio.
    Sorlien EL; Witucki MA; Ogas J
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30222157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation.
    Shinmyo Y; Tanaka S; Tsunoda S; Hosomichi K; Tajima A; Kawasaki H
    Sci Rep; 2016 Feb; 6():20611. PubMed ID: 26857612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system.
    Wong N; Liu W; Wang X
    Genome Biol; 2015 Nov; 16():218. PubMed ID: 26521937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single Guide RNA Library Design and Construction.
    Wang T; Lander ES; Sabatini DM
    Cold Spring Harb Protoc; 2016 Mar; 2016(3):pdb.prot090803. PubMed ID: 26933249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-Cas9 for medical genetic screens: applications and future perspectives.
    Xue HY; Ji LJ; Gao AM; Liu P; He JD; Lu XJ
    J Med Genet; 2016 Feb; 53(2):91-7. PubMed ID: 26673779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system.
    Zhang K; Duan X; Wu J
    Sci Rep; 2016 Jun; 6():27943. PubMed ID: 27305971
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?
    Taylor J; Woodcock S
    J Biomol Screen; 2015 Sep; 20(8):1040-51. PubMed ID: 26048892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural rearrangements generate cell-specific, gene-independent CRISPR-Cas9 loss of fitness effects.
    Gonçalves E; Behan FM; Louzada S; Arnol D; Stronach EA; Yang F; Yusa K; Stegle O; Iorio F; Garnett MJ
    Genome Biol; 2019 Feb; 20(1):27. PubMed ID: 30722791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Knockout of leucine aminopeptidase in Toxoplasma gondii using CRISPR/Cas9.
    Zheng J; Jia H; Zheng Y
    Int J Parasitol; 2015 Feb; 45(2-3):141-8. PubMed ID: 25444863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Efficient Genome Editing via CRISPR/Cas9 to Create Clock Gene Knockout Cells.
    Korge S; Grudziecki A; Kramer A
    J Biol Rhythms; 2015 Oct; 30(5):389-95. PubMed ID: 26243628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large-scale image-based profiling of single-cell phenotypes in arrayed CRISPR-Cas9 gene perturbation screens.
    de Groot R; Lüthi J; Lindsay H; Holtackers R; Pelkmans L
    Mol Syst Biol; 2018 Jan; 14(1):e8064. PubMed ID: 29363560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR/Cas9-Based Positive Screens for Cancer-Related Traits.
    Slipek NJ; Varshney J; Largaespada DA
    Methods Mol Biol; 2019; 1907():137-144. PubMed ID: 30542997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites.
    Park J; Bae S; Kim JS
    Bioinformatics; 2015 Dec; 31(24):4014-6. PubMed ID: 26358729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GEMINI: a variational Bayesian approach to identify genetic interactions from combinatorial CRISPR screens.
    Zamanighomi M; Jain SS; Ito T; Pal D; Daley TP; Sellers WR
    Genome Biol; 2019 Jul; 20(1):137. PubMed ID: 31300006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PICKLES: the database of pooled in-vitro CRISPR knockout library essentiality screens.
    Lenoir WF; Lim TL; Hart T
    Nucleic Acids Res; 2018 Jan; 46(D1):D776-D780. PubMed ID: 29077937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.