BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 30674655)

  • 1. Cyclin G1 and TASCC regulate kidney epithelial cell G
    Canaud G; Brooks CR; Kishi S; Taguchi K; Nishimura K; Magassa S; Scott A; Hsiao LL; Ichimura T; Terzi F; Yang L; Bonventre JV
    Sci Transl Med; 2019 Jan; 11(476):. PubMed ID: 30674655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclin G1 induces maladaptive proximal tubule cell dedifferentiation and renal fibrosis through CDK5 activation.
    Taguchi K; Elias BC; Sugahara S; Sant S; Freedman BS; Waikar SS; Pozzi A; Zent R; Harris RC; Parikh SM; Brooks CR
    J Clin Invest; 2022 Dec; 132(23):. PubMed ID: 36453545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis.
    Li H; Peng X; Wang Y; Cao S; Xiong L; Fan J; Wang Y; Zhuang S; Yu X; Mao H
    Autophagy; 2016 Sep; 12(9):1472-86. PubMed ID: 27304991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoupling dedifferentiation and G2/M arrest in kidney fibrosis.
    Humphreys BD
    J Clin Invest; 2022 Dec; 132(23):. PubMed ID: 36453550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Downregulation of fatty acid oxidation led by Hilpda increases G2/M arrest/delay-induced kidney fibrosis.
    Liu L; Liu T; Jia R; Zhang L; Lv Z; He Z; Qu Y; Sun S; Tai F
    Biochim Biophys Acta Mol Basis Dis; 2023 Jun; 1869(5):166701. PubMed ID: 36990128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tubular cells produce FGF2 via autophagy after acute kidney injury leading to fibroblast activation and renal fibrosis.
    Livingston MJ; Shu S; Fan Y; Li Z; Jiao Q; Yin XM; Venkatachalam MA; Dong Z
    Autophagy; 2023 Jan; 19(1):256-277. PubMed ID: 35491858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maladaptive proximal tubule repair: cell cycle arrest.
    Bonventre JV
    Nephron Clin Pract; 2014; 127(1-4):61-4. PubMed ID: 25343823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aristolochic acid induces renal fibrosis by arresting proximal tubular cells in G2/M phase mediated by HIF-1α.
    Zhao H; Jiang N; Han Y; Yang M; Gao P; Xiong X; Xiong S; Zeng L; Xiao Y; Wei L; Li L; Li C; Yang J; Tang C; Xiao L; Liu F; Liu Y; Sun L
    FASEB J; 2020 Sep; 34(9):12599-12614. PubMed ID: 32706145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epithelial Cell Cycle Behaviour in the Injured Kidney.
    Moonen L; D'Haese PC; Vervaet BA
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30011818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HDAC9-mediated epithelial cell cycle arrest in G2/M contributes to kidney fibrosis in male mice.
    Zhang Y; Yang Y; Yang F; Liu X; Zhan P; Wu J; Wang X; Wang Z; Tang W; Sun Y; Zhang Y; Xu Q; Shang J; Zhen J; Liu M; Yi F
    Nat Commun; 2023 May; 14(1):3007. PubMed ID: 37230975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circular RNA circBNC2 inhibits epithelial cell G2-M arrest to prevent fibrotic maladaptive repair.
    Wang P; Huang Z; Peng Y; Li H; Lin T; Zhao Y; Hu Z; Zhou Z; Zhou W; Liu Y; Hou FF
    Nat Commun; 2022 Oct; 13(1):6502. PubMed ID: 36316334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual disruption of eNOS and ApoE gene accelerates kidney fibrosis and senescence after injury.
    Nishimura K; Taguchi K; Kishi S; Brooks CR; Ochi A; Kadoya H; Ikeda Y; Miyoshi M; Tamaki M; Abe H; Aihara KI; Kashihara N; Nagai K
    Biochem Biophys Res Commun; 2021 Jun; 556():142-148. PubMed ID: 33845306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-493 targets STMN-1 and promotes hypoxia-induced epithelial cell cycle arrest in G
    Liu T; Liu L; Liu M; Du R; Dang Y; Bai M; Zhang L; Ma F; Yang X; Ning X; Sun S
    FASEB J; 2019 Feb; 33(2):1565-1577. PubMed ID: 30183377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numb contributes to renal fibrosis by promoting tubular epithelial cell cycle arrest at G2/M.
    Zhu F; Liu W; Li T; Wan J; Tian J; Zhou Z; Li H; Liu Y; Hou FF; Nie J
    Oncotarget; 2016 May; 7(18):25604-19. PubMed ID: 27016419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury.
    Canaud G; Bonventre JV
    Nephrol Dial Transplant; 2015 Apr; 30(4):575-83. PubMed ID: 25016609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction.
    Livingston MJ; Ding HF; Huang S; Hill JA; Yin XM; Dong Z
    Autophagy; 2016 Jun; 12(6):976-98. PubMed ID: 27123926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Tubular Epithelial Cell Injury Contributes to Renal Fibrosis.
    Liu BC; Tang TT; Lv LL
    Adv Exp Med Biol; 2019; 1165():233-252. PubMed ID: 31399968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cat as a naturally occurring model of renal interstitial fibrosis: Characterisation of primary feline proximal tubular epithelial cells and comparative pro-fibrotic effects of TGF-β1.
    Lawson JS; Liu HH; Syme HM; Purcell R; Wheeler-Jones CPD; Elliott J
    PLoS One; 2018; 13(8):e0202577. PubMed ID: 30138414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sirt6 attenuates hypoxia-induced tubular epithelial cell injury via targeting G2/M phase arrest.
    Gao Z; Chen X; Fan Y; Zhu K; Shi M; Ding G
    J Cell Physiol; 2020 Apr; 235(4):3463-3473. PubMed ID: 31603249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-serine, a novel uremic toxin, induces senescence in human renal tubular cells via GCN2 activation.
    Okada A; Nangaku M; Jao TM; Maekawa H; Ishimono Y; Kawakami T; Inagi R
    Sci Rep; 2017 Sep; 7(1):11168. PubMed ID: 28894140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.