These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 30674664)
21. Kinetic and thermodynamic stability comparison for the fibrillar form of small amyloid-β(1-42) oligomers using scaled molecular dynamics. Saha D; Jana B Phys Chem Chem Phys; 2021 Aug; 23(31):16897-16908. PubMed ID: 34328153 [TBL] [Abstract][Full Text] [Related]
22. The role of phenolic OH groups of flavonoid compounds with H-bond formation ability to suppress amyloid mature fibrils by destabilizing β-sheet conformation of monomeric Aβ17-42. Andarzi Gargari S; Barzegar A; Tarinejad A PLoS One; 2018; 13(6):e0199541. PubMed ID: 29953467 [TBL] [Abstract][Full Text] [Related]
23. Molecular dynamics simulations of Aβ fibril interactions with β-sheet breaker peptides. Bruce NJ; Chen D; Dastidar SG; Marks GE; Schein CH; Bryce RA Peptides; 2010 Nov; 31(11):2100-8. PubMed ID: 20691234 [TBL] [Abstract][Full Text] [Related]
24. Elucidating Important Sites and the Mechanism for Amyloid Fibril Formation by Coarse-Grained Molecular Dynamics. Rojas A; Maisuradze N; Kachlishvili K; Scheraga HA; Maisuradze GG ACS Chem Neurosci; 2017 Jan; 8(1):201-209. PubMed ID: 28095675 [TBL] [Abstract][Full Text] [Related]
25. Dependence of the Formation of Tau and Aβ Peptide Mixed Aggregates on the Secondary Structure of the N-Terminal Region of Aβ. Rojas AV; Maisuradze GG; Scheraga HA J Phys Chem B; 2018 Jul; 122(28):7049-7056. PubMed ID: 29940109 [TBL] [Abstract][Full Text] [Related]
26. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. II. NMR and computer simulation investigation. Hamley IW; Nutt DR; Brown GD; Miravet JF; Escuder B; Rodríguez-Llansola F J Phys Chem B; 2010 Jan; 114(2):940-51. PubMed ID: 20039666 [TBL] [Abstract][Full Text] [Related]
27. The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study. Sun Y; Qian Z; Wei G Phys Chem Chem Phys; 2016 May; 18(18):12582-91. PubMed ID: 27091578 [TBL] [Abstract][Full Text] [Related]
28. Critical role of interfaces and agitation on the nucleation of Abeta amyloid fibrils at low concentrations of Abeta monomers. Morinaga A; Hasegawa K; Nomura R; Ookoshi T; Ozawa D; Goto Y; Yamada M; Naiki H Biochim Biophys Acta; 2010 Apr; 1804(4):986-95. PubMed ID: 20100601 [TBL] [Abstract][Full Text] [Related]
29. Acceleration of the depolymerization of amyloid β fibrils by ultrasonication. Yagi H; Hasegawa K; Yoshimura Y; Goto Y Biochim Biophys Acta; 2013 Dec; 1834(12):2480-5. PubMed ID: 24041501 [TBL] [Abstract][Full Text] [Related]
30. Structural insights into the co-aggregation of Aβ and tau amyloid core peptides: Revealing potential pathological heterooligomers by simulations. Li X; Chen Y; Yang Z; Zhang S; Wei G; Zhang L Int J Biol Macromol; 2024 Jan; 254(Pt 2):127841. PubMed ID: 37924907 [TBL] [Abstract][Full Text] [Related]
31. Micelle-like architecture of the monomer ensemble of Alzheimer's amyloid-β peptide in aqueous solution and its implications for Aβ aggregation. Vitalis A; Caflisch A J Mol Biol; 2010 Oct; 403(1):148-165. PubMed ID: 20709081 [TBL] [Abstract][Full Text] [Related]
32. Computational backbone mutagenesis of Abeta peptides: probing the role of backbone hydrogen bonds in aggregation. Takeda T; Klimov DK J Phys Chem B; 2010 Apr; 114(14):4755-62. PubMed ID: 20302321 [TBL] [Abstract][Full Text] [Related]
34. Pulsed hydrogen-deuterium exchange mass spectrometry probes conformational changes in amyloid beta (Aβ) peptide aggregation. Zhang Y; Rempel DL; Zhang J; Sharma AK; Mirica LM; Gross ML Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14604-9. PubMed ID: 23959898 [TBL] [Abstract][Full Text] [Related]
35. Understanding Amyloid-β Oligomerization at the Molecular Level: The Role of the Fibril Surface. Barz B; Strodel B Chemistry; 2016 Jun; 22(26):8768-72. PubMed ID: 27135646 [TBL] [Abstract][Full Text] [Related]
36. Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent. Lu Y; Derreumaux P; Guo Z; Mousseau N; Wei G Proteins; 2009 Jun; 75(4):954-63. PubMed ID: 19089954 [TBL] [Abstract][Full Text] [Related]
37. Phase diagram of alpha-helical and beta-sheet forming peptides. Auer S; Kashchiev D Phys Rev Lett; 2010 Apr; 104(16):168105. PubMed ID: 20482086 [TBL] [Abstract][Full Text] [Related]
38. New Mechanism of Amyloid Fibril Formation. Galzitskaya O Curr Protein Pept Sci; 2019; 20(6):630-640. PubMed ID: 30686252 [TBL] [Abstract][Full Text] [Related]
39. Impact of sequence on the molecular assembly of short amyloid peptides. Wagoner VA; Cheon M; Chang I; Hall CK Proteins; 2014 Jul; 82(7):1469-83. PubMed ID: 24449257 [TBL] [Abstract][Full Text] [Related]
40. Direct evidence for self-propagation of different amyloid-β fibril conformations. Spirig T; Ovchinnikova O; Vagt T; Glockshuber R Neurodegener Dis; 2014; 14(3):151-9. PubMed ID: 25300967 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]