BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30674860)

  • 1. Low-Cost Microfluidic Sensors with Smart Hydrogel Patterned Arrays Using Electronic Resistive Channel Sensing for Readout.
    Leu HY; Farhoudi N; Reiche CF; Körner J; Mohanty S; Solzbacher F; Magda J
    Gels; 2018 Oct; 4(4):. PubMed ID: 30674860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smart Free-Standing Bilayer Polyacrylamide/DNA Hybrid Hydrogel Film-Based Sensing System Using Changes in Bending Angles as a Visual Signal Readout.
    Yin M; Zhang Y; Liang H; Liu C; Bi Y; Sun J; Guo W
    Anal Chem; 2024 Apr; 96(13):5215-5222. PubMed ID: 38506337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free swelling and confined smart hydrogels for applications in chemomechanical sensors for physiological monitoring.
    Lin G; Chang S; Kuo CH; Magda J; Solzbacher F
    Sens Actuators B Chem; 2009 Feb; 136(1):186. PubMed ID: 20130753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO
    Yao Y; Fan Y
    Biomed Microdevices; 2021 Sep; 23(4):47. PubMed ID: 34550472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smart Hydrogel Swelling State Detection Based on a Power-Transfer Transduction Principle.
    Ahmed B; Reiche CF; Magda JJ; Solzbacher F; Körner J
    ACS Appl Polym Mater; 2024 May; 6(9):5544-5554. PubMed ID: 38752016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro).
    Orthner MP; Lin G; Avula M; Buetefisch S; Magda J; Rieth LW; Solzbacher F
    Sens Actuators B Chem; 2010 Mar; 145(2):807-816. PubMed ID: 23750073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous glucose sensing with fluorescent thin-film hydrogels. 2. Fiber optic sensor fabrication and in vitro testing.
    Thoniyot P; Cappuccio FE; Gamsey S; Cordes DB; Wessling RA; Singaram B
    Diabetes Technol Ther; 2006 Jun; 8(3):279-87. PubMed ID: 16800749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origami microfluidic paper-analytical-devices (omPAD) for sensing and diagnostics.
    Punjiya M; Chung Hee Moon ; Yu Chen ; Sonkusale S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():307-310. PubMed ID: 28268338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogel-Based BioMEMS platforms for smart drug delivery.
    Ziaie B; Siegel RA
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2670. PubMed ID: 17511110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smart Hydrogel Micromechanical Resonators with Ultrasound Readout for Biomedical Sensing.
    Farhoudi N; Leu HY; Laurentius LB; Magda JJ; Solzbacher F; Reiche CF
    ACS Sens; 2020 Jul; 5(7):1882-1889. PubMed ID: 32545953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid, low-cost fabrication of electronic microfluidics via inkjet-printing and xurography (MINX).
    Kikkeri K; Naba FM; Voldman J
    Biosens Bioelectron; 2023 Oct; 237():115499. PubMed ID: 37473550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smart hydrogels as storage elements with dispensing functionality in discontinuous microfluidic systems.
    Haefner S; Frank P; Elstner M; Nowak J; Odenbach S; Richter A
    Lab Chip; 2016 Oct; 16(20):3977-3989. PubMed ID: 27713982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterning Biological Gels for 3D Cell Culture inside Microfluidic Devices by Local Surface Modification through Laminar Flow Patterning.
    Loessberg-Zahl J; Beumer J; van den Berg A; Eijkel JCT; van der Meer AD
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33339092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-sensitivity of fast responsive superporous hydrogels.
    Gemeinhart RA; Chen J; Park H; Park K
    J Biomater Sci Polym Ed; 2000; 11(12):1371-80. PubMed ID: 11261878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogel-based reconfigurable components for microfluidic devices.
    Kim D; Beebe DJ
    Lab Chip; 2007 Feb; 7(2):193-8. PubMed ID: 17268621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ fabrication of macroporous polymer networks within microfluidic devices by living radical photopolymerization and leaching.
    Simms HM; Brotherton CM; Good BT; Davis RH; Anseth KS; Bowman CN
    Lab Chip; 2005 Feb; 5(2):151-7. PubMed ID: 15672128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive monitoring of biochemicals in hydrogel-assisted microfluidic chips.
    Zhao N; Yu Z; Huang J; Liu Y; Zhao Y; Fu X; Yang P; Liu K
    Nanoscale; 2023 Mar; 15(13):6179-6186. PubMed ID: 36912469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoresponsive Semi-IPN Hydrogel Microfibers from Continuous Fluidic Processing with High Elasticity and Fast Actuation.
    Liu Y; Zhang K; Ma J; Vancso GJ
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):901-908. PubMed ID: 28026935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of hydrogels into microfluidic devices with porous membranes as scaffolds enables their drying and reconstitution.
    Shahriari S; Selvaganapathy PR
    Biomicrofluidics; 2022 Sep; 16(5):054108. PubMed ID: 36313189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.