These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 30674970)

  • 1. Neuromusculoskeletal model that walks and runs across a speed range with a few motor control parameter changes based on the muscle synergy hypothesis.
    Aoi S; Ohashi T; Bamba R; Fujiki S; Tamura D; Funato T; Senda K; Ivanenko Y; Tsuchiya K
    Sci Rep; 2019 Jan; 9(1):369. PubMed ID: 30674970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromusculoskeletal models based on the muscle synergy hypothesis for the investigation of adaptive motor control in locomotion via sensory-motor coordination.
    Aoi S; Funato T
    Neurosci Res; 2016 Mar; 104():88-95. PubMed ID: 26616311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor patterns in human walking and running.
    Cappellini G; Ivanenko YP; Poppele RE; Lacquaniti F
    J Neurophysiol; 2006 Jun; 95(6):3426-37. PubMed ID: 16554517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory modulation of gait characteristics in human locomotion: A neuromusculoskeletal modeling study.
    Di Russo A; Stanev D; Armand S; Ijspeert A
    PLoS Comput Biol; 2021 May; 17(5):e1008594. PubMed ID: 34010288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint-level mechanics of the walk-to-run transition in humans.
    Pires NJ; Lay BS; Rubenson J
    J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait Generation and Its Energy Efficiency Based on Rat Neuromusculoskeletal Model.
    Toeda M; Aoi S; Fujiki S; Funato T; Tsuchiya K; Yanagihara D
    Front Neurosci; 2019; 13():1337. PubMed ID: 32009870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Children and adults minimise activated muscle volume by selecting gait parameters that balance gross mechanical power and work demands.
    Hubel TY; Usherwood JR
    J Exp Biol; 2015 Sep; 218(Pt 18):2830-9. PubMed ID: 26400978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The musculoskeletal system of humans is not tuned to maximize the economy of locomotion.
    Carrier DR; Anders C; Schilling N
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):18631-6. PubMed ID: 22065766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. You are better off running than walking revisited: Does an acute vestibular imbalance affect muscle synergies?
    Fabre-Adinolfi D; Parietti-Winkler C; Pierret J; Lassalle-Kinic B; Frère J
    Hum Mov Sci; 2018 Dec; 62():150-160. PubMed ID: 30384183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bipedal gait versatility in the Japanese macaque (Macaca fuscata).
    Ogihara N; Hirasaki E; Andrada E; Blickhan R
    J Hum Evol; 2018 Dec; 125():2-14. PubMed ID: 30502894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fifteen observations on the structure of energy-minimizing gaits in many simple biped models.
    Srinivasan M
    J R Soc Interface; 2011 Jan; 8(54):74-98. PubMed ID: 20542957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of the neuro-musculo-skeletal system for human locomotion. II Real-time adaptability under various constraints.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):113-21. PubMed ID: 7662764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.
    Grasso R; Zago M; Lacquaniti F
    J Neurophysiol; 2000 Jan; 83(1):288-300. PubMed ID: 10634872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferred gait and walk-run transition speeds in ostriches measured using GPS-IMU sensors.
    Daley MA; Channon AJ; Nolan GS; Hall J
    J Exp Biol; 2016 Oct; 219(Pt 20):3301-3308. PubMed ID: 27802152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interplay between gastrocnemius medialis force-length and force-velocity potentials, cumulative EMG activity and energy cost at speeds above and below the walk to run transition speed.
    Monte A; Tecchio P; Nardello F; Bachero-Mena B; Ardigò LP; Zamparo P
    Exp Physiol; 2023 Jan; 108(1):90-102. PubMed ID: 36394370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rules of nature's Formula Run: Muscle mechanics during late stance is the key to explaining maximum running speed.
    Günther M; Rockenfeller R; Weihmann T; Haeufle DFB; Götz T; Schmitt S
    J Theor Biol; 2021 Aug; 523():110714. PubMed ID: 33862096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-body mechanics and gaits in the gray short-tailed opossum Monodelphis domestica: integrating patterns of locomotion in a semi-erect mammal.
    Parchman AJ; Reilly SM; Biknevicius AR
    J Exp Biol; 2003 Apr; 206(Pt 8):1379-88. PubMed ID: 12624172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compliant leg behaviour explains basic dynamics of walking and running.
    Geyer H; Seyfarth A; Blickhan R
    Proc Biol Sci; 2006 Nov; 273(1603):2861-7. PubMed ID: 17015312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low leg compliance permits grounded running at speeds where the inverted pendulum model gets airborne.
    Andrada E; Blickhan R; Ogihara N; Rode C
    J Theor Biol; 2020 Jun; 494():110227. PubMed ID: 32142807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.