These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 30674992)
1. Explaining Evaporation-Triggered Wetting Transition Using Local Force Balance Model and Contact Line-Fraction. Annavarapu RK; Kim S; Wang M; Hart AJ; Sojoudi H Sci Rep; 2019 Jan; 9(1):405. PubMed ID: 30674992 [TBL] [Abstract][Full Text] [Related]
2. Suppression of wetting transition on evaporative fakir droplets by using slippery superhydrophobic surfaces with low depinning force. Shamim JA; Takahashi Y; Goswami A; Shaukat N; Hsu WL; Choi J; Daiguji H Sci Rep; 2023 Feb; 13(1):2368. PubMed ID: 36759577 [TBL] [Abstract][Full Text] [Related]
3. Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces. Chen X; Weibel JA; Garimella SV Sci Rep; 2015 Nov; 5():17110. PubMed ID: 26603940 [TBL] [Abstract][Full Text] [Related]
4. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Zheng QS; Yu Y; Zhao ZH Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993 [TBL] [Abstract][Full Text] [Related]
5. Universal wetting transition of an evaporating water droplet on hydrophobic micro- and nano-structures. Bussonnière A; Bigdeli MB; Chueh DY; Liu Q; Chen P; Tsai PA Soft Matter; 2017 Feb; 13(5):978-984. PubMed ID: 28091660 [TBL] [Abstract][Full Text] [Related]
6. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures. Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928 [TBL] [Abstract][Full Text] [Related]
7. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment. Synytska A; Ionov L; Grundke K; Stamm M Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778 [TBL] [Abstract][Full Text] [Related]
8. Characterization for Cassie-Wenzel wetting transition based on the force response in the process of squeezing liquid drops by two parallel superhydrophobic surfaces. Li J Rev Sci Instrum; 2016 Jun; 87(6):065108. PubMed ID: 27370498 [TBL] [Abstract][Full Text] [Related]
9. A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. Choi W; Tuteja A; Mabry JM; Cohen RE; McKinley GH J Colloid Interface Sci; 2009 Nov; 339(1):208-16. PubMed ID: 19683717 [TBL] [Abstract][Full Text] [Related]
10. Robust Cassie state of wetting in transparent superhydrophobic coatings. Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960 [TBL] [Abstract][Full Text] [Related]
12. Estimation of the Structure of Hydrophobic Surfaces Using the Cassie-Baxter Equation. Myronyuk O; Vanagas E; Rodin AM; Wesolowski M Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274712 [TBL] [Abstract][Full Text] [Related]
13. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition. Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480 [TBL] [Abstract][Full Text] [Related]
14. Progress in understanding wetting transitions on rough surfaces. Bormashenko E Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103 [TBL] [Abstract][Full Text] [Related]
15. Depinning force of a receding droplet on pillared superhydrophobic surfaces: Analytical models. Sarshar MA; Jiang Y; Xu W; Choi CH J Colloid Interface Sci; 2019 May; 543():122-129. PubMed ID: 30782518 [TBL] [Abstract][Full Text] [Related]
16. Evaporation dynamics of a sessile droplet on glass surfaces with fluoropolymer coatings: focusing on the final stage of thin droplet evaporation. Gatapova EY; Shonina AM; Safonov AI; Sulyaeva VS; Kabov OA Soft Matter; 2018 Mar; 14(10):1811-1821. PubMed ID: 29442108 [TBL] [Abstract][Full Text] [Related]
17. Evaporation-Induced Wetting Transition of Nanodroplets on Nanopatterned Surfaces with Concentric Rings: Surface Geometry and Wettability Effects. Gao S; Long J; Liu W; Liu Z Langmuir; 2019 Jul; 35(29):9546-9553. PubMed ID: 31298861 [TBL] [Abstract][Full Text] [Related]
19. Evaporation of droplets on superhydrophobic surfaces: surface roughness and small droplet size effects. Chen X; Ma R; Li J; Hao C; Guo W; Luk BL; Li SC; Yao S; Wang Z Phys Rev Lett; 2012 Sep; 109(11):116101. PubMed ID: 23005650 [TBL] [Abstract][Full Text] [Related]
20. Effect of a Cationic Surfactant on Droplet Wetting on Superhydrophobic Surfaces. Aldhaleai A; Tsai PA Langmuir; 2020 Apr; 36(16):4308-4316. PubMed ID: 32298121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]