These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 30674992)
21. Contact line friction and dynamic contact angles of a capillary bridge between superhydrophobic nanostructured surfaces. Lee E; Müller-Plathe F J Chem Phys; 2022 Jul; 157(2):024701. PubMed ID: 35840373 [TBL] [Abstract][Full Text] [Related]
22. Friction force-based measurements for simultaneous determination of the wetting properties and stability of superhydrophobic surfaces. Beitollahpoor M; Farzam M; Pesika NS J Colloid Interface Sci; 2023 Oct; 648():161-168. PubMed ID: 37301141 [TBL] [Abstract][Full Text] [Related]
24. Critical and Optimal Wall Conditions for Coalescence-Induced Droplet Jumping on Textured Superhydrophobic Surfaces. Yin C; Wang T; Che Z; Jia M; Sun K Langmuir; 2019 Dec; 35(49):16201-16209. PubMed ID: 31738548 [TBL] [Abstract][Full Text] [Related]
25. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces. Jung YC; Bhushan B J Microsc; 2008 Jan; 229(Pt 1):127-40. PubMed ID: 18173651 [TBL] [Abstract][Full Text] [Related]
26. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces. Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866 [TBL] [Abstract][Full Text] [Related]
27. Evaporation-triggered wetting transition for water droplets upon hydrophobic microstructures. Tsai P; Lammertink RG; Wessling M; Lohse D Phys Rev Lett; 2010 Mar; 104(11):116102. PubMed ID: 20366488 [TBL] [Abstract][Full Text] [Related]
28. Friction and Wetting Transitions of Magnetic Droplets on Micropillared Superhydrophobic Surfaces. Al-Azawi A; Latikka M; Jokinen V; Franssila S; Ras RHA Small; 2017 Oct; 13(38):. PubMed ID: 28815888 [TBL] [Abstract][Full Text] [Related]
29. Understanding the wettability of rough surfaces using simultaneous optical and electrochemical analysis of sessile droplets. Zahiri B; Sow PK; Kung CH; Mérida W J Colloid Interface Sci; 2017 Sep; 501():34-44. PubMed ID: 28433883 [TBL] [Abstract][Full Text] [Related]
30. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces. Xu W; Leeladhar R; Kang YT; Choi CH Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600 [TBL] [Abstract][Full Text] [Related]
31. Preparation of a Flexible Superhydrophobic Surface and Its Wetting Mechanism Based on Fractal Theory. Jiang G; Hu J; Chen L Langmuir; 2020 Jul; 36(29):8435-8443. PubMed ID: 32640799 [TBL] [Abstract][Full Text] [Related]
32. Model and experimental studies for contact angles of surfactant solutions on rough and smooth hydrophobic surfaces. Milne AJ; Elliott JA; Zabeti P; Zhou J; Amirfazli A Phys Chem Chem Phys; 2011 Sep; 13(36):16208-19. PubMed ID: 21822523 [TBL] [Abstract][Full Text] [Related]
33. Unified model for contact angle hysteresis on heterogeneous and superhydrophobic surfaces. Raj R; Enright R; Zhu Y; Adera S; Wang EN Langmuir; 2012 Nov; 28(45):15777-88. PubMed ID: 23057739 [TBL] [Abstract][Full Text] [Related]
34. Role and significance of wetting pressures during droplet impact on structured superhydrophobic surfaces. Murugadoss K; Dhar P; Das SK Eur Phys J E Soft Matter; 2017 Jan; 40(1):1. PubMed ID: 28083793 [TBL] [Abstract][Full Text] [Related]
35. Modeling of Droplet Evaporation on Superhydrophobic Surfaces. Fernandes HC; Vainstein MH; Brito C Langmuir; 2015 Jul; 31(27):7652-9. PubMed ID: 26086999 [TBL] [Abstract][Full Text] [Related]
36. Cassie's Law Reformulated: Composite Surfaces from Superspreading to Superhydrophobic. McHale G; Ledesma-Aguilar R; Neto C Langmuir; 2023 Aug; 39(31):11028-11035. PubMed ID: 37487028 [TBL] [Abstract][Full Text] [Related]
37. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY; Cansoy CE Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435 [TBL] [Abstract][Full Text] [Related]
38. Metastable wetting on superhydrophobic surfaces: continuum and atomistic views of the Cassie-Baxter-Wenzel transition. Giacomello A; Chinappi M; Meloni S; Casciola CM Phys Rev Lett; 2012 Nov; 109(22):226102. PubMed ID: 23368136 [TBL] [Abstract][Full Text] [Related]
39. Wetting Transition on Liquid-Repellent Surfaces Probed by Surface Force Measurements and Confocal Imaging. Eriksson M; Claesson PM; Järn M; Tuominen M; Wallqvist V; Schoelkopf J; Gane PAC; Swerin A Langmuir; 2019 Oct; 35(41):13275-13285. PubMed ID: 31547659 [TBL] [Abstract][Full Text] [Related]
40. Pressure induced transition between superhydrophobic states: configuration diagrams and effect of surface feature size. Liu B; Lange FF J Colloid Interface Sci; 2006 Jun; 298(2):899-909. PubMed ID: 16480735 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]