BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 30675345)

  • 1. Real-time high-resolution mid-infrared optical coherence tomography.
    Israelsen NM; Petersen CR; Barh A; Jain D; Jensen M; Hannesschläger G; Tidemand-Lichtenberg P; Pedersen C; Podoleanu A; Bang O
    Light Sci Appl; 2019; 8():11. PubMed ID: 30675345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-band infrared optical coherence tomography using a single supercontinuum source.
    Zorin I; Gattinger P; Brandstetter M; Heise B
    Opt Express; 2020 Mar; 28(6):7858-7874. PubMed ID: 32225421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging.
    Cimalla P; Walther J; Mehner M; Cuevas M; Koch E
    Opt Express; 2009 Oct; 17(22):19486-500. PubMed ID: 19997169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source.
    Cheung CS; Daniel JM; Tokurakawa M; Clarkson WA; Liang H
    Opt Express; 2015 Feb; 23(3):1992-2001. PubMed ID: 25836070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mid-infrared Fourier-domain optical coherence tomography with a pyroelectric linear array.
    Zorin I; Su R; Prylepa A; Kilgus J; Brandstetter M; Heise B
    Opt Express; 2018 Dec; 26(25):33428-33439. PubMed ID: 30645495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrahigh resolution spectral-domain optical coherence tomography using the 1000-1600 nm spectral band.
    Bernstein L; Ramier A; Wu J; Aiello VD; Béland MJ; Lin CP; Yun SH
    Biomed Opt Express; 2022 Apr; 13(4):1939-1947. PubMed ID: 35519264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography.
    Kawagoe H; Ishida S; Aramaki M; Sakakibara Y; Omoda E; Kataura H; Nishizawa N
    Biomed Opt Express; 2014 Mar; 5(3):932-43. PubMed ID: 24688825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-encoded mid-infrared Fourier-domain optical coherence tomography.
    Zorin I; Gattinger P; Prylepa A; Heise B
    Opt Lett; 2021 Sep; 46(17):4108-4111. PubMed ID: 34469951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth.
    Sharma U; Chang EW; Yun SH
    Opt Express; 2008 Nov; 16(24):19712-23. PubMed ID: 19030057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shot-noise limited, supercontinuum-based optical coherence tomography.
    Rao D S S; Jensen M; Grüner-Nielsen L; Olsen JT; Heiduschka P; Kemper B; Schnekenburger J; Glud M; Mogensen M; Israelsen NM; Bang O
    Light Sci Appl; 2021 Jun; 10(1):133. PubMed ID: 34183643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mid-infrared optical coherence tomography.
    Colley CS; Hebden JC; Delpy DT; Cambrey AD; Brown RA; Zibik EA; Ng WH; Wilson LR; Cockburn JW
    Rev Sci Instrum; 2007 Dec; 78(12):123108. PubMed ID: 18163721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact Er:Yb:glass-laser-based supercontinuum source for high-resolution optical coherence tomography.
    Stumpf MC; Zeller SC; Schlatter A; Okuno T; Südmeyer T; Keller U
    Opt Express; 2008 Jul; 16(14):10572-9. PubMed ID: 18607472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity-Enhanced Fourier Transform Mid-Infrared Spectroscopy Using a Supercontinuum Laser Source.
    Zorin I; Kilgus J; Duswald K; Lendl B; Heise B; Brandstetter M
    Appl Spectrosc; 2020 Apr; 74(4):485-493. PubMed ID: 32096412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlative infrared optical coherence tomography and hyperspectral chemical imaging.
    Zorin I; Su R; Heise B; Lendl B; Brandstetter M
    J Opt Soc Am A Opt Image Sci Vis; 2020 Sep; 37(9):B19-B26. PubMed ID: 32902416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm.
    Nishizawa N; Chen Y; Hsiung P; Ippen EP; Fujimoto JG
    Opt Lett; 2004 Dec; 29(24):2846-8. PubMed ID: 15645800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-high-speed phase-sensitive optical coherence reflectometer with a stretched pulse supercontinuum source.
    Song H; Cho SB; Kim DU; Jeong S; Kim DY
    Appl Opt; 2011 Jul; 50(21):4000-4. PubMed ID: 21772383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source.
    Moon S; Kim DY
    Opt Express; 2006 Nov; 14(24):11575-84. PubMed ID: 19529577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamental characteristics of a synthesized light source for optical coherence tomography.
    Sato M; Wakaki I; Watanabe Y; Tanno N
    Appl Opt; 2005 May; 44(13):2471-81. PubMed ID: 15881053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared and mid-infrared semiconductor broadband light emitters.
    Hou CC; Chen HM; Zhang JC; Zhuo N; Huang YQ; Hogg RA; Childs DT; Ning JQ; Wang ZG; Liu FQ; Zhang ZY
    Light Sci Appl; 2018; 7():17170. PubMed ID: 30839527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mid-infrared optical coherence tomography with a stabilized OP-GaP optical parametric oscillator.
    Charsley JM; Farrell C; Rutkauskas M; Schunemann PG; Reid DT
    Opt Lett; 2024 Jun; 49(11):2882-2885. PubMed ID: 38824283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.