BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 30675345)

  • 21. Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura.
    Hanna N; Saltzman D; Mukai D; Chen Z; Sasse S; Milliken J; Guo S; Jung W; Colt H; Brenner M
    J Thorac Cardiovasc Surg; 2005 Mar; 129(3):615-22. PubMed ID: 15746746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation.
    Fuchs S; Rödel C; Blinne A; Zastrau U; Wünsche M; Hilbert V; Glaser L; Viefhaus J; Frumker E; Corkum P; Förster E; Paulus GG
    Sci Rep; 2016 Feb; 6():20658. PubMed ID: 26860894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fourier transform spectrometer based on high-repetition-rate mid-infrared supercontinuum sources for trace gas detection.
    Abbas MA; Jahromi KE; Nematollahi M; Krebbers R; Liu N; Woyessa G; Bang O; Huot L; Harren FJM; Khodabakhsh A
    Opt Express; 2021 Jul; 29(14):22315-22330. PubMed ID: 34265999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical frequency comb spectroscopy.
    Foltynowicz A; Masłowski P; Ban T; Adler F; Cossel KC; Briles TC; Ye J
    Faraday Discuss; 2011; 150():23-31; discussion 113-60. PubMed ID: 22457942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm.
    Lee SW; Jeong HW; Kim BM; Ahn YC; Jung W; Chen Z
    J Korean Phys Soc; 2009 Dec; 55(6):2354-2360. PubMed ID: 23239900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength.
    Yun S; Tearney G; Bouma B; Park B; de Boer J
    Opt Express; 2003 Dec; 11(26):3598-604. PubMed ID: 19471496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quasi-supercontinuum generation using 1.06 μm ultrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography.
    Sumimura K; Genda Y; Ohta T; Itoh K; Nishizawa N
    Opt Lett; 2010 Nov; 35(21):3631-3. PubMed ID: 21042373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mid-Infrared Standoff Spectroscopy Using a Supercontinuum Laser with Compact Fabry-Pérot Filter Spectrometers.
    Kilgus J; Duswald K; Langer G; Brandstetter M
    Appl Spectrosc; 2018 Apr; 72(4):634-642. PubMed ID: 29164925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-resolution mid-infrared optical coherence tomography with kHz line rate.
    Israelsen NM; Rodrigo PJ; Petersen CR; Woyessa G; Hansen RE; Tidemand-Lichtenberg P; Pedersen C; Bang O
    Opt Lett; 2021 Sep; 46(18):4558-4561. PubMed ID: 34525046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second.
    Choi DH; Hiro-Oka H; Shimizu K; Ohbayashi K
    Biomed Opt Express; 2012 Dec; 3(12):3067-86. PubMed ID: 23243560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source.
    Ko T; Adler D; Fujimoto J; Mamedov D; Prokhorov V; Shidlovski V; Yakubovich S
    Opt Express; 2004 May; 12(10):2112-9. PubMed ID: 19475046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid high spectral resolution broadband mid-infrared SFG spectrometer development and demonstration.
    Madeikis K; Kananavicius R; Danilevicius R; Zaukevicius A; Januskevicius R; Michailovas A
    Opt Express; 2021 Aug; 29(16):25344-25357. PubMed ID: 34614867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography.
    Kang J; Feng P; Wei X; Lam EY; Tsia KK; Wong KKY
    Opt Express; 2018 Feb; 26(4):4370-4381. PubMed ID: 29475287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm.
    Salem R; Jiang Z; Liu D; Pafchek R; Gardner D; Foy P; Saad M; Jenkins D; Cable A; Fendel P
    Opt Express; 2015 Nov; 23(24):30592-602. PubMed ID: 26698692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics.
    Su R; Kirillin M; Chang EW; Sergeeva E; Yun SH; Mattsson L
    Opt Express; 2014 Jun; 22(13):15804-19. PubMed ID: 24977838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-watt, multi-octave, mid-infrared femtosecond source.
    Seidel M; Xiao X; Hussain SA; Arisholm G; Hartung A; Zawilski KT; Schunemann PG; Habel F; Trubetskov M; Pervak V; Pronin O; Krausz F
    Sci Adv; 2018 Apr; 4(4):eaaq1526. PubMed ID: 29713685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography.
    Unterhuber A; Povazay B; Bizheva K; Hermann B; Sattmann H; Stingl A; Le T; Seefeld M; Menzel R; Preusser M; Budka H; Schubert Ch; Reitsamer H; Ahnelt PK; Morgan JE; Cowey A; Drexler W
    Phys Med Biol; 2004 Apr; 49(7):1235-46. PubMed ID: 15128201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical coherence tomography of human kidney.
    Onozato ML; Andrews PM; Li Q; Jiang J; Cable A; Chen Y
    J Urol; 2010 May; 183(5):2090-4. PubMed ID: 20303512
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.