These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 30675345)

  • 41. Optimization of optical spectral throughput of acousto-optic modulators for high-speed optical coherence tomography.
    Chen Y; Liu X; Cobb M; Myaing M; Sun T; Li X
    Opt Express; 2005 Oct; 13(20):7816-22. PubMed ID: 19498809
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging.
    Chen TC; Cense B; Pierce MC; Nassif N; Park BH; Yun SH; White BR; Bouma BE; Tearney GJ; de Boer JF
    Arch Ophthalmol; 2005 Dec; 123(12):1715-20. PubMed ID: 16344444
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultrahigh resolution all-reflective optical coherence tomography system with a compact fiber-based supercontinuum source.
    Kieu KQ; Klein J; Evans A; Barton JK; Peyghambarian N
    J Biomed Opt; 2011 Oct; 16(10):106004. PubMed ID: 22029351
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser.
    Kilgus J; Langer G; Duswald K; Zimmerleiter R; Zorin I; Berer T; Brandstetter M
    Opt Express; 2018 Nov; 26(23):30644-30654. PubMed ID: 30469958
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-spatial-resolution deep tissue imaging with spectral-domain optical coherence microscopy in the 1700-nm spectral band.
    Yamanaka M; Hayakawa N; Nishizawa N
    J Biomed Opt; 2019 Jul; 24(7):1-4. PubMed ID: 31364330
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography.
    Bizheva K; Unterhuber A; Hermann B; Povazay B; Sattmann H; Drexler W; Stingl A; Le T; Mei M; Holzwarth R; Reitsamer HA; Morgan JE; Cowey A
    J Biomed Opt; 2004; 9(4):719-24. PubMed ID: 15250758
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Advances in mid-infrared spectroscopy enabled by supercontinuum laser sources.
    Zorin I; Gattinger P; Ebner A; Brandstetter M
    Opt Express; 2022 Feb; 30(4):5222-5254. PubMed ID: 35209491
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual spectrometer system with spectral compounding for 1-μm optical coherence tomography in vivo.
    Cui D; Liu X; Zhang J; Yu X; Ding S; Luo Y; Gu J; Shum P; Liu L
    Opt Lett; 2014 Dec; 39(23):6727-30. PubMed ID: 25490663
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Combined Multiple-SLED Broadband Light Source at 1300 nm for High Resolution Optical Coherence Tomography.
    Wang H; Jenkins MW; Rollins AM
    Opt Commun; 2008 Apr; 281(7):. PubMed ID: 24347689
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients.
    Povazay B; Hermann B; Unterhuber A; Hofer B; Sattmann H; Zeiler F; Morgan JE; Falkner-Radler C; Glittenberg C; Blinder S; Drexler W
    J Biomed Opt; 2007; 12(4):041211. PubMed ID: 17867800
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography.
    Marchand PJ; Bouwens A; Szlag D; Nguyen D; Descloux A; Sison M; Coquoz S; Extermann J; Lasser T
    Biomed Opt Express; 2017 Jul; 8(7):3343-3359. PubMed ID: 28717571
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region.
    Ishida S; Nishizawa N
    Biomed Opt Express; 2012 Feb; 3(2):282-94. PubMed ID: 22312581
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-resolution full-field optical coherence tomography with a Linnik microscope.
    Dubois A; Vabre L; Boccara AC; Beaurepaire E
    Appl Opt; 2002 Feb; 41(4):805-12. PubMed ID: 11993929
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electronically delay-tuned upconversion cross-correlator for characterization of mid-infrared pulses.
    Huot L; Moselund PM; Tidemand-Lichtenberg P; Pedersen C
    Opt Lett; 2018 Jun; 43(12):2881-2884. PubMed ID: 29905714
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging.
    Yamanaka M; Teranishi T; Kawagoe H; Nishizawa N
    Sci Rep; 2016 Aug; 6():31715. PubMed ID: 27546517
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 1.9-3.6  μm supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio.
    Yin K; Zhang B; Yao J; Yang L; Liu G; Hou J
    Opt Lett; 2016 Nov; 41(21):5067-5070. PubMed ID: 27805687
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simultaneous dual-band ultra-high resolution optical coherence tomography.
    Spöler F; Kray S; Grychtol P; Hermes B; Bornemann J; Först M; Kurz H
    Opt Express; 2007 Aug; 15(17):10832-41. PubMed ID: 19547440
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates.
    Kolb JP; Pfeiffer T; Eibl M; Hakert H; Huber R
    Biomed Opt Express; 2018 Jan; 9(1):120-130. PubMed ID: 29359091
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-Contact Paper Thickness and Quality Monitoring Based on Mid-Infrared Optical Coherence Tomography and THz Time Domain Spectroscopy.
    Hansen RE; Bæk T; Lange SL; Israelsen NM; Mäntylä M; Bang O; Petersen CR
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214449
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.