These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 30675345)

  • 61. In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range.
    Marchand PJ; Szlag D; Bouwens A; Lasser T
    J Biomed Opt; 2018 Mar; 23(3):1-7. PubMed ID: 29575831
    [TBL] [Abstract][Full Text] [Related]  

  • 62. High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 microm.
    Lee SW; Jeong HW; Kim BM
    J Biomed Opt; 2010; 15(1):010501. PubMed ID: 20210417
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Time-resolved spectral-domain optical coherence tomography with CMOS SPAD sensors.
    Kufcsák A; Bagnaninchi P; Erdogan AT; Henderson RK; Krstajić N
    Opt Express; 2021 Jun; 29(12):18720-18733. PubMed ID: 34154122
    [TBL] [Abstract][Full Text] [Related]  

  • 64. 2.2 microm axial resolution optical coherence tomography based on a 400 nm-bandwidth superluminescent diode.
    Chan MC; Su YS; Lin CF; Sun CK
    Scanning; 2006; 28(1):11-4. PubMed ID: 16502620
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Three-band, 1.9-μm axial resolution full-field optical coherence microscopy over a 530-1700 nm wavelength range using a single camera.
    Federici A; Dubois A
    Opt Lett; 2014 Mar; 39(6):1374-7. PubMed ID: 24690791
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Video-rate centimeter-range optical coherence tomography based on dual optical frequency combs by electro-optic modulators.
    Kang J; Feng P; Li B; Zhang C; Wei X; Lam EY; Tsia KK; Wong KKY
    Opt Express; 2018 Sep; 26(19):24928-24939. PubMed ID: 30469601
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Line-field confocal time-domain optical coherence tomography with dynamic focusing.
    Dubois A; Levecq O; Azimani H; Davis A; Ogien J; Siret D; Barut A
    Opt Express; 2018 Dec; 26(26):33534-33542. PubMed ID: 30650800
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT.
    Yao X; Gan Y; Chang E; Hibshoosh H; Feldman S; Hendon C
    Lasers Surg Med; 2017 Mar; 49(3):258-269. PubMed ID: 28264146
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography.
    Povazay B; Hofer B; Torti C; Hermann B; Tumlinson AR; Esmaeelpour M; Egan CA; Bird AC; Drexler W
    Opt Express; 2009 Mar; 17(5):4134-50. PubMed ID: 19259251
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 microm and 1.3 microm.
    Wong BJ; Zhao Y; Yamaguchi M; Nassif N; Chen Z; De Boer JF
    Otolaryngol Head Neck Surg; 2004 Mar; 130(3):334-8. PubMed ID: 15054375
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ophthalmic imaging by spectral optical coherence tomography.
    Wojtkowski M; Bajraszewski T; Gorczyńska I; Targowski P; Kowalczyk A; Wasilewski W; Radzewicz C
    Am J Ophthalmol; 2004 Sep; 138(3):412-9. PubMed ID: 15364223
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Millimeter-scale chip-based supercontinuum generation for optical coherence tomography.
    Ji X; Mojahed D; Okawachi Y; Gaeta AL; Hendon CP; Lipson M
    Sci Adv; 2021 Sep; 7(38):eabg8869. PubMed ID: 34533990
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Noise characterization of supercontinuum sources for low-coherence interferometry applications.
    Brown WJ; Kim S; Wax A
    J Opt Soc Am A Opt Image Sci Vis; 2014 Dec; 31(12):2703-10. PubMed ID: 25606759
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch.
    Xu J; Zhang C; Xu J; Wong KK; Tsia KK
    Opt Lett; 2014 Feb; 39(3):622-5. PubMed ID: 24487881
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A Broadband Mid-Infrared Trace Gas Sensor Using Supercontinuum Light Source: Applications for Real-Time Quality Control for Fruit Storage.
    Eslami Jahromi K; Pan Q; Khodabakhsh A; Sikkens C; Assman P; Cristescu SM; Moselund PM; Janssens M; Verlinden BE; Harren FJM
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31117174
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Axial super-resolution optical coherence tomography via complex-valued network.
    Wang L; Chen S; Liu L; Yin X; Shi G; Mo J
    Phys Med Biol; 2023 Dec; 68(23):. PubMed ID: 37922558
    [TBL] [Abstract][Full Text] [Related]  

  • 77. High-speed scanless entire bandwidth mid-infrared chemical imaging.
    Zhao Y; Kusama S; Furutani Y; Huang WH; Luo CW; Fuji T
    Nat Commun; 2023 Jul; 14(1):3929. PubMed ID: 37402722
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm.
    Lim H; Jiang Y; Wang Y; Huang YC; Chen Z; Wise FW
    Opt Lett; 2005 May; 30(10):1171-3. PubMed ID: 15945143
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Spectral and spatial full-bandwidth correlation analysis of bulk-generated supercontinuum in the mid-infrared.
    van de Walle A; Hanna M; Guichard F; Zaouter Y; Thai A; Forget N; Georges P
    Opt Lett; 2015 Feb; 40(4):673-6. PubMed ID: 25680178
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Upconversion-enabled array spectrometer for the mid-infrared, featuring kilohertz spectra acquisition rates.
    Wolf S; Kiessling J; Kunz M; Popko G; Buse K; Kühnemann F
    Opt Express; 2017 Jun; 25(13):14504-14515. PubMed ID: 28789036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.