BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 30675606)

  • 21. Barcoded nucleotides.
    Baccaro A; Steck AL; Marx A
    Angew Chem Int Ed Engl; 2012 Jan; 51(1):254-7. PubMed ID: 22083884
    [No Abstract]   [Full Text] [Related]  

  • 22. Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
    Lee BJ; Barch M; Castner EW; Völker J; Breslauer KJ
    Biochemistry; 2007 Sep; 46(38):10756-66. PubMed ID: 17718541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural basis for the selective incorporation of an artificial nucleotide opposite a DNA adduct by a DNA polymerase.
    Betz K; Nilforoushan A; Wyss LA; Diederichs K; Sturla SJ; Marx A
    Chem Commun (Camb); 2017 Nov; 53(94):12704-12707. PubMed ID: 29136072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stimulation on DNA triplet repeat strand slippage synthesis by the designed spirocycles.
    Xi Z; Ouyang D; Mu HT
    Bioorg Med Chem Lett; 2006 Mar; 16(5):1180-4. PubMed ID: 16364637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical tweezers analysis of DNA-protein complexes.
    Heller I; Hoekstra TP; King GA; Peterman EJ; Wuite GJ
    Chem Rev; 2014 Mar; 114(6):3087-119. PubMed ID: 24443844
    [No Abstract]   [Full Text] [Related]  

  • 26. Investigation of the DNA-dependent cyclohexenyl nucleic acid polymerization and the cyclohexenyl nucleic acid-dependent DNA polymerization.
    Kempeneers V; Renders M; Froeyen M; Herdewijn P
    Nucleic Acids Res; 2005; 33(12):3828-36. PubMed ID: 16027107
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of nonnatural nucleotides to probe the contributions of shape complementarity and pi-electron surface area during DNA polymerization.
    Zhang X; Lee I; Berdis AJ
    Biochemistry; 2005 Oct; 44(39):13101-10. PubMed ID: 16185078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of incorporation kinetics of non-fluorescent native nucleotides by DNA polymerases using fluorescence microscopy.
    Walsh MT; Huang X
    Nucleic Acids Res; 2017 Dec; 45(21):e175. PubMed ID: 29036327
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Strategically Located Arg/Lys Residue Promotes Correct Base Paring During Nucleic Acid Biosynthesis in Polymerases.
    Genna V; Carloni P; De Vivo M
    J Am Chem Soc; 2018 Mar; 140(9):3312-3321. PubMed ID: 29424536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Varied DNA polymerase-substrate interactions in the nucleotide binding pocket.
    Strerath M; Summerer D; Marx A
    Chembiochem; 2002 Jun; 3(6):578-80. PubMed ID: 12325016
    [No Abstract]   [Full Text] [Related]  

  • 31. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases.
    Hottin A; Marx A
    Acc Chem Res; 2016 Mar; 49(3):418-27. PubMed ID: 26947566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the enzymatic incorporation of an imidazole nucleotide into DNA.
    Röthlisberger P; Levi-Acobas F; Sarac I; Marlière P; Herdewijn P; Hollenstein M
    Org Biomol Chem; 2017 May; 15(20):4449-4455. PubMed ID: 28485736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic analysis of N-alkylaryl carboxamide hexitol nucleotides as substrates for evolved polymerases.
    Renders M; Dumbre S; Abramov M; Kestemont D; Margamuljana L; Largy E; Cozens C; Vandenameele J; Pinheiro VB; Toye D; Frère JM; Herdewijn P
    Nucleic Acids Res; 2019 Mar; 47(5):2160-2168. PubMed ID: 30698800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of Taq polymerase with DNA at the polymerase active site.
    Eom SH; Wang J; Steitz TA
    Nature; 1996 Jul; 382(6588):278-81. PubMed ID: 8717047
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing DNA polymerase-DNA interactions: examining the template strand in exonuclease complexes using 2-aminopurine fluorescence and acrylamide quenching.
    Tleugabulova D; Reha-Krantz LJ
    Biochemistry; 2007 Jun; 46(22):6559-69. PubMed ID: 17497891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescent analysis of translesion DNA synthesis by using a novel, non-natural nucleotide analogue.
    Lee I; Berdis A
    Chembiochem; 2006 Dec; 7(12):1990-7. PubMed ID: 17091513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time detection of polymerase activity using supercritical angle fluorescence.
    Krieg A; Ruckstuhl T; Laib S; Seeger S
    J Fluoresc; 2004 Jan; 14(1):75-8. PubMed ID: 15622864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of non-natural nucleotides for selective incorporation opposite damaged DNA.
    Vineyard D; Zhang X; Donnelly A; Lee I; Berdis AJ
    Org Biomol Chem; 2007 Nov; 5(22):3623-30. PubMed ID: 17971991
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Altering DNA polymerase incorporation fidelity by distorting the dNTP binding pocket with a bulky carcinogen-damaged template.
    Yan SF; Wu M; Geacintov NE; Broyde S
    Biochemistry; 2004 Jun; 43(24):7750-65. PubMed ID: 15196018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nontemplate polymerization of free nucleotides into genetic elements by thermophilic DNA polymerase in vitro.
    Cheng DW; Calderón-Urrea A
    Nucleosides Nucleotides Nucleic Acids; 2011 Nov; 30(11):979-90. PubMed ID: 22060559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.