These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30675636)

  • 1. Rapid micro-assays for amylolytic activities determination: customization and validation of the tests.
    Borkowska M; Białas W; Kubiak M; Celińska E
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2367-2379. PubMed ID: 30675636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability factor for identification of amylolytic enzyme activity in the optimized starch-iodine assay.
    Gaenssle ALO; van der Maarel MJEC; Jurak E
    Anal Biochem; 2020 May; 597():113696. PubMed ID: 32201136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera.
    Eksteen JM; Van Rensburg P; Cordero Otero RR; Pretorius IS
    Biotechnol Bioeng; 2003 Dec; 84(6):639-46. PubMed ID: 14595776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of solid-state enzymatic hydrolysis of chestnut using mixtures of alpha-amylase and glucoamylase.
    López C; Torrado A; Guerra NP; Pastrana L
    J Agric Food Chem; 2005 Feb; 53(4):989-95. PubMed ID: 15713010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities.
    Xiao Z; Storms R; Tsang A
    Anal Biochem; 2006 Apr; 351(1):146-8. PubMed ID: 16500607
    [No Abstract]   [Full Text] [Related]  

  • 6. In vitro assessment of the enzymatic degradation of several starch based biomaterials.
    Azevedo HS; Gama FM; Reis RL
    Biomacromolecules; 2003; 4(6):1703-12. PubMed ID: 14606899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase.
    Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A
    Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of Schwanniomyces alluvius amylolytic enzymes.
    Wilson JJ; Ingledew WM
    Appl Environ Microbiol; 1982 Aug; 44(2):301-7. PubMed ID: 6181739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic hydrolysis of chestnut purée: process optimization using mixtures of alpha-amylase and glucoamylase.
    López C; Torrado A; Fuciños P; Guerra NP; Pastrana L
    J Agric Food Chem; 2004 May; 52(10):2907-14. PubMed ID: 15137834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alpha-amylase and glucoamylase production by Schwanniomyces castellii.
    Clementi F; Rossi J
    Antonie Van Leeuwenhoek; 1986; 52(4):343-52. PubMed ID: 3094447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning of a novel thermostable glucoamylase from thermophilic fungus Rhizomucor pusillus and high-level co-expression with α-amylase in Pichia pastoris.
    He Z; Zhang L; Mao Y; Gu J; Pan Q; Zhou S; Gao B; Wei D
    BMC Biotechnol; 2014 Dec; 14():114. PubMed ID: 25539598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aspergillus clavatus UEM 04: An efficient producer of glucoamylase and α-amylase able to hydrolyze gelatinized and raw starch.
    Mendonça APS; Dos Reis KL; Barbosa-Tessmann IP
    Int J Biol Macromol; 2023 Sep; 249():125890. PubMed ID: 37479205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amylolytic hydrolysis of native starch granules affected by granule surface area.
    Kim JC; Kong BW; Kim MJ; Lee SH
    J Food Sci; 2008 Nov; 73(9):C621-4. PubMed ID: 19021791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secretion of alpha-amylase and multiple forms of glucoamylase by the yeast Trichosporon pullulans.
    De Mot R; Verachtert H
    Can J Microbiol; 1986 Jan; 32(1):47-51. PubMed ID: 3084051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems.
    Warren FJ; Zhang B; Waltzer G; Gidley MJ; Dhital S
    Carbohydr Polym; 2015 Mar; 117():192-200. PubMed ID: 25498625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical structure and absorption properties of tailor-made porous starch granules produced by selected amylolytic enzymes.
    Jung YS; Lee BH; Yoo SH
    PLoS One; 2017; 12(7):e0181372. PubMed ID: 28727742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of thermostable α-amylase injection on mechanical and physiochemical properties for saccharification of extruded corn starch.
    Myat L; Ryu GH
    J Sci Food Agric; 2014 Jan; 94(2):288-95. PubMed ID: 23744822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains.
    Inokuma K; Yoshida T; Ishii J; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1655-63. PubMed ID: 25432675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consolidated bioprocessing of raw starch with Saccharomyces cerevisiae strains expressing fungal alpha-amylase and glucoamylase combinations.
    Sakwa L; Cripwell RA; Rose SH; Viljoen-Bloom M
    FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 30085077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic action of recombinant alpha-amylase and glucoamylase on the hydrolysis of starch granules.
    Wong DW; Robertson GH; Lee CC; Wagschal K
    Protein J; 2007 Apr; 26(3):159-64. PubMed ID: 17203391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.