These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30675780)

  • 1. Highly Efficient Zn-Cu-In-Se Quantum Dot-Sensitized Solar Cells through Surface Capping with Ascorbic Acid.
    Zhang H; Fang W; Wang W; Qian N; Ji X
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6927-6936. PubMed ID: 30675780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%.
    Du J; Du Z; Hu JS; Pan Z; Shen Q; Sun J; Long D; Dong H; Sun L; Zhong X; Wan LJ
    J Am Chem Soc; 2016 Mar; 138(12):4201-9. PubMed ID: 26962680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zn-Cu-In-S-Se Quinary "Green" Alloyed Quantum-Dot-Sensitized Solar Cells with a Certified Efficiency of 14.4 .
    Song H; Lin Y; Zhou M; Rao H; Pan Z; Zhong X
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):6137-6144. PubMed ID: 33258189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ZnS
    Zhang L; Rao H; Pan Z; Zhong X
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41415-41423. PubMed ID: 31613581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zn-Ag-In-S quantum dot sensitized solar cells with enhanced efficiency by tuning defects.
    Zhang H; Fang W; Zhong Y; Zhao Q
    J Colloid Interface Sci; 2019 Jul; 547():267-274. PubMed ID: 30954770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells.
    Jiao S; Shen Q; Mora-Seró I; Wang J; Pan Z; Zhao K; Kuga Y; Zhong X; Bisquert J
    ACS Nano; 2015 Jan; 9(1):908-15. PubMed ID: 25562411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alloying Strategy in Cu-In-Ga-Se Quantum Dots for High Efficiency Quantum Dot Sensitized Solar Cells.
    Peng W; Du J; Pan Z; Nakazawa N; Sun J; Du Z; Shen G; Yu J; Hu JS; Shen Q; Zhong X
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5328-5336. PubMed ID: 28092935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12.
    Jiao S; Du J; Du Z; Long D; Jiang W; Pan Z; Li Y; Zhong X
    J Phys Chem Lett; 2017 Feb; 8(3):559-564. PubMed ID: 28075601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Efficiency Quantum Dot Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots on Photoanodes.
    Wang W; Jiang G; Yu J; Wang W; Pan Z; Nakazawa N; Shen Q; Zhong X
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22549-22559. PubMed ID: 28621932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of injection and recombination in quantum dot sensitized solar cells.
    Barea EM; Shalom M; Giménez S; Hod I; Mora-Seró I; Zaban A; Bisquert J
    J Am Chem Soc; 2010 May; 132(19):6834-9. PubMed ID: 20423152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture.
    Chang JY; Lin JM; Su LF; Chang CF
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8740-52. PubMed ID: 23937511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Secondary Deposition for Improving Quantum Dot Loading in Fabricating Quantum Dot Solar Cells.
    Wang W; Zhao L; Wang Y; Xue W; He F; Xie Y; Li Y
    J Am Chem Soc; 2019 Mar; 141(10):4300-4307. PubMed ID: 30798596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layers.
    Shaikh JS; Shaikh NS; Mali SS; Patil JV; Beknalkar SA; Patil AP; Tarwal NL; Kanjanaboos P; Hong CK; Patil PS
    ChemSusChem; 2019 Nov; 12(21):4724-4753. PubMed ID: 31347771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode.
    Jiang L; You T; Deng WQ
    Nanotechnology; 2013 Oct; 24(41):415401. PubMed ID: 24045808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Spectral Analysis of CdZnSe Ternary Quantum Dots Sensitized TiO2 Tubes and Its Application in Visible-Light Photocatalysis].
    Han ZZ; Ren LL; Pan HB; Li CY; Chen JH; Chen JZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3161-6. PubMed ID: 26978928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zn-doped nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells.
    Zhu G; Cheng Z; Lv T; Pan L; Zhao Q; Sun Z
    Nanoscale; 2010 Jul; 2(7):1229-32. PubMed ID: 20648354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-temperature synthesis of Cu(2-x)E (E = S, Se) nanotubes with hierarchical architecture as high-performance counter electrodes of quantum-dot-sensitized solar cells.
    Chen XQ; Li Z; Bai Y; Sun Q; Wang LZ; Dou SX
    Chemistry; 2015 Jan; 21(3):1055-63. PubMed ID: 25400022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting Biexciton Collection Efficiency at Quantum Dot-Oxide Interfaces by Hole Localization at the Quantum Dot Shell.
    Wang HI; Bonn M; Cánovas E
    J Phys Chem Lett; 2017 Jun; 8(12):2654-2658. PubMed ID: 28558226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of the effects of PEG additives in electrolytes on the performance of quantum dot sensitized solar cells.
    Sun Y; Jiang G; Zhou M; Pan Z; Zhong X
    RSC Adv; 2018 Aug; 8(52):29958-29966. PubMed ID: 35547302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells.
    Tian J; Zhang Q; Zhang L; Gao R; Shen L; Zhang S; Qu X; Cao G
    Nanoscale; 2013 Feb; 5(3):936-43. PubMed ID: 23166058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.