These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 30675971)

  • 1. Phosphorus-Modulation-Triggered Surface Disorder in Titanium Dioxide Nanocrystals Enables Exceptional Sodium-Storage Performance.
    Xia Q; Huang Y; Xiao J; Wang L; Lin Z; Li W; Liu H; Gu Q; Liu HK; Chou SL
    Angew Chem Int Ed Engl; 2019 Mar; 58(12):4022-4026. PubMed ID: 30675971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defect-Assisted Selective Surface Phosphorus Doping to Enhance Rate Capability of Titanium Dioxide for Sodium Ion Batteries.
    Gan Q; He H; Zhu Y; Wang Z; Qin N; Gu S; Li Z; Luo W; Lu Z
    ACS Nano; 2019 Aug; 13(8):9247-9258. PubMed ID: 31334639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorine Triggered Surface and Lattice Regulation in Anatase TiO
    Ni M; Sun D; Zhu X; Xia Q; Zhao Y; Xue L; Wu J; Qiu C; Guo Q; Shi Z; Liu X; Wang G; Xia H
    Small; 2020 Dec; 16(50):e2006366. PubMed ID: 33230931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors.
    Deng X; Zou K; Momen R; Cai P; Chen J; Hou H; Zou G; Ji X
    Sci Bull (Beijing); 2021 Sep; 66(18):1858-1868. PubMed ID: 36654395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries.
    Walter M; Erni R; Kovalenko MV
    Sci Rep; 2015 Feb; 5():8418. PubMed ID: 25673146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Interfacial Kinetics of Carbon Monolith Boosting Ultrafast Na-Storage.
    Liu L; Chen Y; Xie Y; Tao P; Wang Z; Li Q; Wang K; Yan C
    Small; 2019 Feb; 15(5):e1804158. PubMed ID: 30589215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multichannel Porous TiO
    Wu Y; Jiang Y; Shi J; Gu L; Yu Y
    Small; 2017 Jun; 13(22):. PubMed ID: 28418215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Titanium Dioxide Nanostructures for Enhanced Lithium-Ion Storage.
    Lee DH; Lee BH; Sinha AK; Park JH; Kim MS; Park J; Shin H; Lee KS; Sung YE; Hyeon T
    J Am Chem Soc; 2018 Dec; 140(48):16676-16684. PubMed ID: 30418777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of Crystal Surface and Lattice by Doping: Achieving Ultrafast Metal-Ion Insertion in Anatase TiO
    Wang HY; Chen HY; Hsu YY; Stimming U; Chen HM; Liu B
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):29186-29193. PubMed ID: 27726332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Sodium-Site Doping on Enhancing the Lithium Storage Performance of Sodium Lithium Titanate.
    Wang P; Qian S; Yi TF; Yu H; Yan L; Li P; Lin X; Shui M; Shu J
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10302-14. PubMed ID: 27052633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistical Coupling Interconnected ZnS/SnS
    Cao L; Zhang B; Ou X; Wang C; Peng C; Zhang J
    Small; 2019 Mar; 15(9):e1804861. PubMed ID: 30675762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma-Induced Amorphous Shell and Deep Cation-Site S Doping Endow TiO
    He H; Huang D; Pang W; Sun D; Wang Q; Tang Y; Ji X; Guo Z; Wang H
    Adv Mater; 2018 Jun; 30(26):e1801013. PubMed ID: 29744949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na(+) intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling.
    Chen C; Wen Y; Hu X; Ji X; Yan M; Mai L; Hu P; Shan B; Huang Y
    Nat Commun; 2015 Apr; 6():6929. PubMed ID: 25906991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2D Titania-Carbon Superlattices Vertically Encapsulated in 3D Hollow Carbon Nanospheres Embedded with 0D TiO
    Xia Q; Lin Z; Lai W; Wang Y; Ma C; Yan Z; Gu Q; Wei W; Wang JZ; Zhang Z; Liu HK; Dou SX; Chou SL
    Angew Chem Int Ed Engl; 2019 Oct; 58(40):14125-14128. PubMed ID: 31469209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper-Doped Titanium Dioxide Bronze Nanowires with Superior High Rate Capability for Lithium Ion Batteries.
    Zhang Y; Meng Y; Zhu K; Qiu H; Ju Y; Gao Y; Du F; Zou B; Chen G; Wei Y
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7957-65. PubMed ID: 26963224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-Fast Anode for Sodium-Ion Batteries.
    Liu Y; Zhang A; Shen C; Liu Q; Cao X; Ma Y; Chen L; Lau C; Chen TC; Wei F; Zhou C
    ACS Nano; 2017 Jun; 11(6):5530-5537. PubMed ID: 28530803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun TiO2/C Nanofibers As a High-Capacity and Cycle-Stable Anode for Sodium-Ion Batteries.
    Xiong Y; Qian J; Cao Y; Ai X; Yang H
    ACS Appl Mater Interfaces; 2016 Jul; 8(26):16684-9. PubMed ID: 27311835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Li storage performance in SnO2 nanocrystals by a synergetic doping.
    Wan N; Lu X; Wang Y; Zhang W; Bai Y; Hu YS; Dai S
    Sci Rep; 2016 Jan; 6():18978. PubMed ID: 26733355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable Sodium Storage of Red Phosphorus Anode Enabled by a Dual-Protection Strategy.
    Xu Q; Sun JK; Yue FS; Li JY; Li G; Xin S; Yin YX; Guo YG
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30479-30486. PubMed ID: 30133250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen and Phosphorus Codoped Porous Carbon Framework as Anode Material for High Rate Lithium-Ion Batteries.
    Ma C; Deng C; Liao X; He Y; Ma Z; Xiong H
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36969-36975. PubMed ID: 30273484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.