These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 30676040)

  • 1. Habits without values.
    Miller KJ; Shenhav A; Ludvig EA
    Psychol Rev; 2019 Mar; 126(2):292-311. PubMed ID: 30676040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed rewards facilitate habit formation.
    Urcelay GP; Jonkman S
    J Exp Psychol Anim Learn Cogn; 2019 Oct; 45(4):413-421. PubMed ID: 31368767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Goal-directed decision making as probabilistic inference: a computational framework and potential neural correlates.
    Solway A; Botvinick MM
    Psychol Rev; 2012 Jan; 119(1):120-54. PubMed ID: 22229491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theory of actions and habits: The interaction of rate correlation and contiguity systems in free-operant behavior.
    Perez OD; Dickinson A
    Psychol Rev; 2020 Nov; 127(6):945-971. PubMed ID: 32406713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulus control of actions and habits: A role for reinforcer predictability and attention in the development of habitual behavior.
    Thrailkill EA; Trask S; Vidal P; Alcalá JA; Bouton ME
    J Exp Psychol Anim Learn Cogn; 2018 Oct; 44(4):370-384. PubMed ID: 30407063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Goal-Directed Decision Making with Spiking Neurons.
    Friedrich J; Lengyel M
    J Neurosci; 2016 Feb; 36(5):1529-46. PubMed ID: 26843636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of prefrontal cortical mechanisms for goal-directed behavior.
    Hasselmo ME
    J Cogn Neurosci; 2005 Jul; 17(7):1115-29. PubMed ID: 16102240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-based learning protects against forming habits.
    Gillan CM; Otto AR; Phelps EA; Daw ND
    Cogn Affect Behav Neurosci; 2015 Sep; 15(3):523-36. PubMed ID: 25801925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Goal-Directed and Habit-Like Modulations of Stimulus Processing during Reinforcement Learning.
    Luque D; Beesley T; Morris RW; Jack BN; Griffiths O; Whitford TJ; Le Pelley ME
    J Neurosci; 2017 Mar; 37(11):3009-3017. PubMed ID: 28193692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Habits, action sequences and reinforcement learning.
    Dezfouli A; Balleine BW
    Eur J Neurosci; 2012 Apr; 35(7):1036-51. PubMed ID: 22487034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractionating the all-or-nothing definition of goal-directed and habitual decision-making.
    Schreiner DC; Renteria R; Gremel CM
    J Neurosci Res; 2020 Jun; 98(6):998-1006. PubMed ID: 31642551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurochemical and Behavioral Dissections of Decision-Making in a Rodent Multistage Task.
    Groman SM; Massi B; Mathias SR; Curry DW; Lee D; Taylor JR
    J Neurosci; 2019 Jan; 39(2):295-306. PubMed ID: 30413646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Habitual control of goal selection in humans.
    Cushman F; Morris A
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13817-22. PubMed ID: 26460050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of prelimbic and infralimbic cortex respectively affects minimally-trained and extensively-trained goal-directed actions.
    Shipman ML; Trask S; Bouton ME; Green JT
    Neurobiol Learn Mem; 2018 Nov; 155():164-172. PubMed ID: 30053577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of the rodent prelimbic and medial orbitofrontal cortices in goal-directed action: A brief review.
    Woon EP; Sequeira MK; Barbee BR; Gourley SL
    J Neurosci Res; 2020 Jun; 98(6):1020-1030. PubMed ID: 31820488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of an unconventional process of instrumental learning characteristically initiated with outcome devaluation-insensitivity and generalized action selection.
    Iguchi Y; Lin Z; Nishikawa H; Minabe Y; Toda S
    Sci Rep; 2017 Feb; 7():43307. PubMed ID: 28240299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABAAα1-mediated plasticity in the orbitofrontal cortex regulates context-dependent action selection.
    Swanson AM; Allen AG; Shapiro LP; Gourley SL
    Neuropsychopharmacology; 2015 Mar; 40(4):1027-36. PubMed ID: 25348603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans.
    de Wit S; Corlett PR; Aitken MR; Dickinson A; Fletcher PC
    J Neurosci; 2009 Sep; 29(36):11330-8. PubMed ID: 19741139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impairments in reinforcement learning do not explain enhanced habit formation in cocaine use disorder.
    Lim TV; Cardinal RN; Savulich G; Jones PS; Moustafa AA; Robbins TW; Ersche KD
    Psychopharmacology (Berl); 2019 Aug; 236(8):2359-2371. PubMed ID: 31372665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The prefrontal cortex and hybrid learning during iterative competitive games.
    Abe H; Seo H; Lee D
    Ann N Y Acad Sci; 2011 Dec; 1239():100-8. PubMed ID: 22145879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.