These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3067616)

  • 1. Mechanism and regulation of ethanol elimination in humans: intermolecular hydrogen transfer and oxidoreduction in vivo.
    Cronholm T; Jones AW; Skagerberg S
    Alcohol Clin Exp Res; 1988 Oct; 12(5):683-6. PubMed ID: 3067616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen transfer between ethanol molecules during oxidoreduction in vivo.
    Cronholm T
    Biochem J; 1985 Jul; 229(2):315-22. PubMed ID: 4038269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethanol metabolism in isolated hepatocytes. Effects of methylene blue, cyanamide and penicillamine on the redox state of the bound coenzyme and on the substrate exchange at alcohol dehydrogenase.
    Cronholm T
    Biochem Pharmacol; 1993 Feb; 45(3):553-8. PubMed ID: 8442754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ethanol on the redox state of the coenzyme bound to alcohol dehydrogenase studied in isolated hepatocytes.
    Cronholm T
    Biochem J; 1987 Dec; 248(2):567-72. PubMed ID: 3435467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The roles of the hepatocellular redox state and the hepatic acetaldehyde concentration in determining the ethanol elimination rate in fasted rats.
    Ryle PR; Chakraborty J; Thomson AD
    Biochem Pharmacol; 1985 Oct; 34(19):3577-83. PubMed ID: 2932116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate determining factors of ethanol oxidation in hepatocytes from starved and fed rats: effect of acetaldehyde concentration on the rate of NADH oxidation catalyzed by alcohol dehydrogenase.
    Vind C; Grunnet N
    Alcohol Alcohol Suppl; 1987; 1():295-9. PubMed ID: 3426694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethanol-acetaldehyde exchange in vivo and in isolated hepatocytes.
    Cronholm T
    Alcohol Alcohol Suppl; 1987; 1():265-9. PubMed ID: 2827694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pH-dependent binding of NADH and subsequent enzyme isomerization of human liver beta 3 beta 3 alcohol dehydrogenase.
    Stone CL; Jipping MB; Owusu-Dekyi K; Hurley TD; Li TK; Bosron WF
    Biochemistry; 1999 May; 38(18):5829-35. PubMed ID: 10231534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NAD+-dependent ethanol oxidation: redox effects and rate limitation.
    Cronholm T
    Pharmacol Biochem Behav; 1983; 18 Suppl 1():229-32. PubMed ID: 6634835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dehydrogenase-dependent ethanol metabolism in deer mice (Peromyscus maniculatus) lacking cytosolic alcohol dehydrogenase. Reversibility and isotope effects in vivo and in subcellular fractions.
    Norsten C; Cronholm T; Ekström G; Handler JA; Thurman RG; Ingelman-Sundberg M
    J Biol Chem; 1989 Apr; 264(10):5593-7. PubMed ID: 2925622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-metabolism of ethanol, ethanol-derived acetaldehyde, and 4-hydroxynonenal in isolated rat hepatocytes.
    Hartley DP; Petersen DR
    Alcohol Clin Exp Res; 1997 Apr; 21(2):298-304. PubMed ID: 9113267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of alcohol dehydrogenase and ethanol oxidation in vivo and in hepatocytes.
    Cornell NW
    Pharmacol Biochem Behav; 1983; 18 Suppl 1():215-21. PubMed ID: 6356160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of epinephrine on ethanol metabolism by isolated rat hepatocytes.
    Mezey E; Potter JJ; Sharma S; Akinshola BE
    Biochem Pharmacol; 1990 Dec; 40(11):2473-8. PubMed ID: 2268366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deuterium D(V/K) isotope effects on ethanol oxidation in hepatocytes: importance of the reverse ADH-reaction.
    Lundquist F; Iversen HL; Hansen LL
    Pharmacol Toxicol; 1990 Apr; 66(4):244-51. PubMed ID: 2371231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific base catalysis by yeast alcohol dehydrogenase I with substitutions of histidine-48 by glutamate or serine residues in the proton relay system.
    Plapp BV; Kratzer DA; Souhrada SK; Warth E; Jacobi T
    Chem Biol Interact; 2023 Sep; 382():110558. PubMed ID: 37247811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of age and gender on in vivo ethanol elimination, hepatic alcohol dehydrogenase activity, and NAD+ availability in F344 rats.
    Seitz HK; Xu Y; Simanowski UA; Osswald B
    Res Exp Med (Berl); 1992; 192(3):205-12. PubMed ID: 1636065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidoreduction of butanol in deermice (Peromyscus maniculatus) lacking hepatic cytosolic alcohol dehydrogenase.
    Cronholm T; Norsten-Höög C; Ekström G; Handler JA; Thurman RG; Ingelman-Sundberg M
    Eur J Biochem; 1992 Feb; 204(1):353-7. PubMed ID: 1740147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.
    Plapp BV; Leidal KG; Murch BP; Green DW
    Chem Biol Interact; 2015 Jun; 234():85-95. PubMed ID: 25641189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The AdhS alleloenzyme of alcohol dehydrogenase from Drosophila melanogaster. Variation of kinetic parameters with pH.
    Winberg JO; McKinley-McKee JS
    Biochem J; 1988 Oct; 255(2):589-99. PubMed ID: 3144268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rate-determining factors for ethanol metabolism in vivo during fasting.
    Lumeng L; Bosron WF; Li TK
    Adv Exp Med Biol; 1980; 132():489-96. PubMed ID: 7424728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.