These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30676592)

  • 1. Tuning the oscillatory dynamics of the Belousov-Zhabotinsky reaction using ruthenium nanoparticle decorated graphene.
    Prasanna Kumar DJ; Verma S; Jasuja K; Dayal P
    Phys Chem Chem Phys; 2019 Feb; 21(6):3164-3173. PubMed ID: 30676592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 0D-2D heterostructures as nanocatalysts for self-oscillating reactions: an investigation into chemical kinetics.
    Kumar DJP; Reddy KR; Dayal P
    Phys Chem Chem Phys; 2020 Nov; 22(42):24516-24525. PubMed ID: 33090146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast-Moving Self-Propelled Droplets of a Nanocatalyzed Belousov-Zhabotinsky Reaction.
    Kumar DJP; Borkar C; Dayal P
    Langmuir; 2021 Nov; 37(43):12586-12595. PubMed ID: 34670083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy and power characteristics of nanocatalyzed Belousov-Zhabotinsky reactions via bifurcation analyses.
    Rajput V; Dayal P
    Phys Rev E; 2023 Dec; 108(6-1):064211. PubMed ID: 38243536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bromide control, bifurcation and activation in the Belousov-Zhabotinsky reaction.
    Hastings HM; Sobel SG; Field RJ; Bongiovi D; Burke B; Richford D; Finzel K; Garuthara M
    J Phys Chem A; 2008 May; 112(21):4715-8. PubMed ID: 18459756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical attributes of nanocatalyzed self-oscillating reactions via bifurcation analyses.
    Rajput V; Dayal P
    J Chem Phys; 2021 Aug; 155(6):064902. PubMed ID: 34391358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beating polymer gels coupled with a nonlinear chemical reaction.
    Yoshida R; Kokufuta E; Yamaguchi T
    Chaos; 1999 Jun; 9(2):260-266. PubMed ID: 12779823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terpyridine- and bipyridine-based ruthenium complexes as catalysts for the Belousov-Zhabotinsky reaction.
    Delgado J; Zhang Y; Xu B; Epstein IR
    J Phys Chem A; 2011 Mar; 115(11):2208-15. PubMed ID: 21361390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronization of Belousov-Zhabotinsky oscillators with electrochemical coupling in a spontaneous process.
    Liu Y; Pérez-Mercader J; Kiss IZ
    Chaos; 2022 Sep; 32(9):093128. PubMed ID: 36182363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of acetone on the dynamics of temporal oscillations and waves in the ruthenium-catalyzed Belousov-Zhabotinsky reaction.
    Somboon T; Wilairat P; Müller SC; Kheowan OU
    Phys Chem Chem Phys; 2015 Mar; 17(11):7114-21. PubMed ID: 25684352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling chemical oscillations in heterogeneous Belousov-Zhabotinsky gels via mechanical strain.
    Yashin VV; Van Vliet KJ; Balazs AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046214. PubMed ID: 19518319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple model for synchronization of two Belousov-Zhabotinsky gels interacting mechanically.
    Sukegawa T; Yamada Y; Maeda S
    J Chem Phys; 2024 Mar; 160(10):. PubMed ID: 38465685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of PDMS-Based Microfluidics on Belousov-Zhabotinsky Chemical Oscillators.
    Sheehy J; Hunter I; Moustaka ME; Aghvami SA; Fahmy Y; Fraden S
    J Phys Chem B; 2020 Dec; 124(51):11690-11698. PubMed ID: 33315410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant Behavior in a Periodically Forced Nonisothermal Oregonator.
    García-Selfa D; Muñuzuri AP; Pérez-Mercader J; Simakov DSA
    J Phys Chem A; 2019 Sep; 123(38):8083-8088. PubMed ID: 31441660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of New Belousov-Zhabotinsky Micro-Oscillators on the Basis of Silica Gel Beads.
    Mallphanov IL; Vanag VK
    J Phys Chem A; 2020 Jan; 124(2):272-282. PubMed ID: 31899640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical wave propagation preserved on an inhibitory field in the ruthenium-catalyzed Belousov-Zhabotinsky reaction.
    Nakata S; Ezaki T; Ikura YS; Kitahata H
    J Phys Chem A; 2013 Oct; 117(41):10615-8. PubMed ID: 24044665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Belousov-Zhabotinsky Reaction in Thermoresponsive Core-Shell Hydrogel Microspheres with a Tris(2,2'-bipyridyl)ruthenium Catalyst in the Core.
    Inui K; Watanabe T; Minato H; Matsui S; Ishikawa K; Yoshida R; Suzuki D
    J Phys Chem B; 2020 May; 124(18):3828-3835. PubMed ID: 32293889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature dependence of the Oregonator model for the Belousov-Zhabotinsky reaction.
    Pullela SR; Cristancho D; He P; Luo D; Hall KR; Cheng Z
    Phys Chem Chem Phys; 2009 Jun; 11(21):4236-43. PubMed ID: 19458825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillatory dynamics of the Belousov-Zhabotinsky system in the presence of a self-assembling nonionic polymer. Role of the reactants concentration.
    Sciascia L; Rossi F; Sbriziolo C; Liveri ML; Varsalona R
    Phys Chem Chem Phys; 2010 Oct; 12(37):11674-82. PubMed ID: 20714482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning electrochemical microscopy of Belousov-Zhabotinsky reaction: how confined oscillations reveal short lived radicals and auto-catalytic species.
    Stockmann TJ; Noël JM; Ristori S; Combellas C; Abou-Hassan A; Rossi F; Kanoufi F
    Anal Chem; 2015 Oct; 87(19):9621-30. PubMed ID: 26344794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.