These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 30676660)
1. Highlighting the uniqueness in dielectrophoretic enrichment of circulating tumor cells. S Iliescu F; Sim WJ; Heidari H; P Poenar D; Miao J; Taylor HK; Iliescu C Electrophoresis; 2019 May; 40(10):1457-1477. PubMed ID: 30676660 [TBL] [Abstract][Full Text] [Related]
2. On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells. Aghaamoo M; Aghilinejad A; Chen X; Xu J Electrophoresis; 2019 May; 40(10):1486-1493. PubMed ID: 30740752 [TBL] [Abstract][Full Text] [Related]
3. Affinity Versus Label-Free Isolation of Circulating Tumor Cells: Who Wins? Murlidhar V; Rivera-Báez L; Nagrath S Small; 2016 Sep; 12(33):4450-63. PubMed ID: 27436104 [TBL] [Abstract][Full Text] [Related]
4. Contactless dielectrophoretic spectroscopy: examination of the dielectric properties of cells found in blood. Sano MB; Henslee EA; Schmelz E; Davalos RV Electrophoresis; 2011 Nov; 32(22):3164-71. PubMed ID: 22102497 [TBL] [Abstract][Full Text] [Related]
5. Isolation of rare cancer cells from blood cells using dielectrophoresis. Salmanzadeh A; Sano MB; Shafiee H; Stremler MA; Davalos RV Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():590-3. PubMed ID: 23365961 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis. Hyun KA; Jung HI Electrophoresis; 2013 Apr; 34(7):1028-41. PubMed ID: 23436295 [TBL] [Abstract][Full Text] [Related]
7. Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size-independent, label-free isolation of circulating tumor cells. Waheed W; Alazzam A; Mathew B; Christoforou N; Abu-Nada E J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1087-1088():133-137. PubMed ID: 29734073 [TBL] [Abstract][Full Text] [Related]
8. Enrichment of prostate cancer cells from blood cells with a hybrid dielectrophoresis and immunocapture microfluidic system. Huang C; Liu H; Bander NH; Kirby BJ Biomed Microdevices; 2013 Dec; 15(6):941-8. PubMed ID: 23807279 [TBL] [Abstract][Full Text] [Related]
9. Separation of CTCs from WBCs using DEP-assisted inertial manipulation: A numerical study. Uddin MR; Sarowar MT; Chen X Electrophoresis; 2023 Dec; 44(23):1781-1794. PubMed ID: 37753944 [TBL] [Abstract][Full Text] [Related]
10. Antibody-free isolation of rare cancer cells from blood based on 3D lateral dielectrophoresis. Cheng IF; Huang WL; Chen TY; Liu CW; Lin YD; Su WC Lab Chip; 2015 Jul; 15(14):2950-9. PubMed ID: 26085231 [TBL] [Abstract][Full Text] [Related]
11. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force. Huang SB; Wu MH; Lin YH; Hsieh CH; Yang CL; Lin HC; Tseng CP; Lee GB Lab Chip; 2013 Apr; 13(7):1371-83. PubMed ID: 23389102 [TBL] [Abstract][Full Text] [Related]
12. Separation of circulating tumor cells from blood using dielectrophoretic DLD manipulation. Rahmati M; Chen X Biomed Microdevices; 2021 Sep; 23(4):49. PubMed ID: 34581876 [TBL] [Abstract][Full Text] [Related]
13. Size-based separation methods of circulating tumor cells. Hao SJ; Wan Y; Xia YQ; Zou X; Zheng SY Adv Drug Deliv Rev; 2018 Feb; 125():3-20. PubMed ID: 29326054 [TBL] [Abstract][Full Text] [Related]
14. Label-free enrichment of MCF7 breast cancer cells from leukocytes using continuous flow dielectrophoresis. Çağlayan Arslan Z; Demircan Yalçın Y; Külah H Electrophoresis; 2022 Jul; 43(13-14):1531-1544. PubMed ID: 35318696 [TBL] [Abstract][Full Text] [Related]
15. Combination of microfluidic chips and biosensing for the enrichment of circulating tumor cells. Shi J; Zhao C; Shen M; Chen Z; Liu J; Zhang S; Zhang Z Biosens Bioelectron; 2022 Apr; 202():114025. PubMed ID: 35078145 [TBL] [Abstract][Full Text] [Related]
17. Wedge-shaped microfluidic chip for circulating tumor cells isolation and its clinical significance in gastric cancer. Yang C; Zhang N; Wang S; Shi D; Zhang C; Liu K; Xiong B J Transl Med; 2018 May; 16(1):139. PubMed ID: 29792200 [TBL] [Abstract][Full Text] [Related]
18. Toward Microfluidic Label-Free Isolation and Enumeration of Circulating Tumor Cells from Blood Samples. Raillon C; Che J; Thill S; Duchamp M; Desbiolles BXE; Millet A; Sollier E; Renaud P Cytometry A; 2019 Oct; 95(10):1085-1095. PubMed ID: 31364817 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the efficiency of lung cancer cell capture using microfluidic dielectrophoresis and aptamer-based surface modification. Lin SH; Su TC; Huang SJ; Jen CP Electrophoresis; 2024 Jun; 45(11-12):1088-1098. PubMed ID: 38175846 [TBL] [Abstract][Full Text] [Related]
20. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients. Hyun KA; Kwon K; Han H; Kim SI; Jung HI Biosens Bioelectron; 2013 Feb; 40(1):206-12. PubMed ID: 22857995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]