BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 30676660)

  • 1. Highlighting the uniqueness in dielectrophoretic enrichment of circulating tumor cells.
    S Iliescu F; Sim WJ; Heidari H; P Poenar D; Miao J; Taylor HK; Iliescu C
    Electrophoresis; 2019 May; 40(10):1457-1477. PubMed ID: 30676660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells.
    Aghaamoo M; Aghilinejad A; Chen X; Xu J
    Electrophoresis; 2019 May; 40(10):1486-1493. PubMed ID: 30740752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Affinity Versus Label-Free Isolation of Circulating Tumor Cells: Who Wins?
    Murlidhar V; Rivera-Báez L; Nagrath S
    Small; 2016 Sep; 12(33):4450-63. PubMed ID: 27436104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contactless dielectrophoretic spectroscopy: examination of the dielectric properties of cells found in blood.
    Sano MB; Henslee EA; Schmelz E; Davalos RV
    Electrophoresis; 2011 Nov; 32(22):3164-71. PubMed ID: 22102497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of rare cancer cells from blood cells using dielectrophoresis.
    Salmanzadeh A; Sano MB; Shafiee H; Stremler MA; Davalos RV
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():590-3. PubMed ID: 23365961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis.
    Hyun KA; Jung HI
    Electrophoresis; 2013 Apr; 34(7):1028-41. PubMed ID: 23436295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size-independent, label-free isolation of circulating tumor cells.
    Waheed W; Alazzam A; Mathew B; Christoforou N; Abu-Nada E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1087-1088():133-137. PubMed ID: 29734073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enrichment of prostate cancer cells from blood cells with a hybrid dielectrophoresis and immunocapture microfluidic system.
    Huang C; Liu H; Bander NH; Kirby BJ
    Biomed Microdevices; 2013 Dec; 15(6):941-8. PubMed ID: 23807279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of CTCs from WBCs using DEP-assisted inertial manipulation: A numerical study.
    Uddin MR; Sarowar MT; Chen X
    Electrophoresis; 2023 Dec; 44(23):1781-1794. PubMed ID: 37753944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibody-free isolation of rare cancer cells from blood based on 3D lateral dielectrophoresis.
    Cheng IF; Huang WL; Chen TY; Liu CW; Lin YD; Su WC
    Lab Chip; 2015 Jul; 15(14):2950-9. PubMed ID: 26085231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force.
    Huang SB; Wu MH; Lin YH; Hsieh CH; Yang CL; Lin HC; Tseng CP; Lee GB
    Lab Chip; 2013 Apr; 13(7):1371-83. PubMed ID: 23389102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of circulating tumor cells from blood using dielectrophoretic DLD manipulation.
    Rahmati M; Chen X
    Biomed Microdevices; 2021 Sep; 23(4):49. PubMed ID: 34581876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-based separation methods of circulating tumor cells.
    Hao SJ; Wan Y; Xia YQ; Zou X; Zheng SY
    Adv Drug Deliv Rev; 2018 Feb; 125():3-20. PubMed ID: 29326054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free enrichment of MCF7 breast cancer cells from leukocytes using continuous flow dielectrophoresis.
    Çağlayan Arslan Z; Demircan Yalçın Y; Külah H
    Electrophoresis; 2022 Jul; 43(13-14):1531-1544. PubMed ID: 35318696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of microfluidic chips and biosensing for the enrichment of circulating tumor cells.
    Shi J; Zhao C; Shen M; Chen Z; Liu J; Zhang S; Zhang Z
    Biosens Bioelectron; 2022 Apr; 202():114025. PubMed ID: 35078145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circulating tumor cell technologies.
    Ferreira MM; Ramani VC; Jeffrey SS
    Mol Oncol; 2016 Mar; 10(3):374-94. PubMed ID: 26897752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wedge-shaped microfluidic chip for circulating tumor cells isolation and its clinical significance in gastric cancer.
    Yang C; Zhang N; Wang S; Shi D; Zhang C; Liu K; Xiong B
    J Transl Med; 2018 May; 16(1):139. PubMed ID: 29792200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward Microfluidic Label-Free Isolation and Enumeration of Circulating Tumor Cells from Blood Samples.
    Raillon C; Che J; Thill S; Duchamp M; Desbiolles BXE; Millet A; Sollier E; Renaud P
    Cytometry A; 2019 Oct; 95(10):1085-1095. PubMed ID: 31364817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients.
    Hyun KA; Kwon K; Han H; Kim SI; Jung HI
    Biosens Bioelectron; 2013 Feb; 40(1):206-12. PubMed ID: 22857995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enumeration, Dielectrophoretic Capture, and Molecular Analysis of Circulating Tumor Cells.
    Yee SS; Carpenter EL
    Methods Mol Biol; 2017; 1634():193-202. PubMed ID: 28819852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.